Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Ophthalmol ; 17(4): 616-624, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638265

RESUMEN

AIM: To explore whether CD3ε is involved in the adaptive immunity of Aspergillus fumigatus (A. fumigatus) keratitis in mice and the role of innate and adaptive immunity in it. METHODS: Mice models of A. fumigatus keratitis were established by intra-stromal injection and corneal epithelial scratching. Subconjunctival injections of natamycin, wedelolactone, LOX-1 inhibitor (poly I) or Dectin-1 inhibitor (laminarin) were used to treat mice with A. fumigatus keratitis. Mice were pretreated by intraperitoneal injection of anti-mouse CD3ε. We observed the corneal infection of mice under the slit lamp microscope and made a clinical score. The protein expression of CD3ε and interleukin-10 (IL-10) was determined by Western blotting. RESULTS: With the disease progresses, the degree of corneal opacity and edema augmented. In the intra-stromal injection models, CD3ε protein expression began to increase significantly on the 2nd day. However, in the scraping epithelial method models, CD3ε only began to increase on the 3rd day. After natamycin treatment, the degree of corneal inflammation in mice was significantly attenuated on the 3rd day. After wedelolactone treatment, the severity of keratitis worsened. And the amount of CD3ε protein was also reduced, compared with the control group. By inhibiting LOX-1 and Dectin-1, there was no significant difference in CD3ε production compared with the control group. After inhibiting CD3ε, corneal ulcer area and clinical score increased, and IL-10 expression was downregulated. CONCLUSION: As a pan T cell marker, CD3ε participate in the adaptive immunity of A. fumigatus keratitis in mice. In our mice models, the corneas will enter the adaptive immune stage faster. By regulating IL-10, CD3ε exerts anti-inflammatory and repairs effects in the adaptive immune stage.

2.
Phys Rev Lett ; 130(15): 153803, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37115865

RESUMEN

Orbital angular momentum (OAM) conservation plays an important role in shaping and controlling structured light with nonlinear optics. The OAM of a beam originating from three-wave mixing should be the sum or difference of the other two inputs because no light-matter OAM exchange occurs in parametric nonlinear interactions. Here, we report anomalous OAM transfer in parametric upconversion, in which a Hermite-Gauss mode signal interacts with a specially engineered pump capable of astigmatic transformation, resulting in Laguerre-Gaussian mode sum-frequency generation (SFG). The anomaly here refers to the fact that the pump and signal both carry no net OAM, while their SFG does. We reveal experimentally that there is also an OAM inflow to the residual pump, having the same amount of that to the SFG but with the opposite sign, and thus holds system OAM conservation. This unexpected OAM selection rule improves our understanding of OAM transfer among interacting waves and may inspire new ideas for controlling OAM states via nonlinear optics.

3.
Front Surg ; 9: 994795, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36684363

RESUMEN

Objective: The aim of this study was to identify the influence of a tourniquet on the blood loss, transfusion requirement, swelling, pain, knee function, range of motion (ROM), operation time, bone cement mantle thickness, and complications in patients operated with total knee arthroplasty (TKA). Methods: Two authors independently retrieved PubMed, Embase, and CENTRAL to identify eligible randomized controlled trials (RCTs) evaluating the effectiveness of a tourniquet in TKA. Fixed- (I 2 < 50%) or random-effects (I 2 > 50%) models were selected to perform meta-analysis according to the value of I 2. Mean difference (MD) and risk ratio were selected as the effect sizes for continuous and dichotomous variables, respectively. Results: A total of 29 RCTs, involving 2,512 operations (1,258 procedures with a tourniquet and 1,254 procedures without a tourniquet), were included, and 18 outcomes were compared. Tourniquet application could significantly decrease intraoperative blood loss (MD = -138.72 ml, p < 0.001), shorten operation duration (MD = -1.77 min, p < 0.001), and increase cement mantle thickness (MD = 0.17 mm, p < 0.001). However, it was significantly associated with increased postoperative pain intensity, decreased full ROM/flexion ROM/extension ROM, poorer knee function, increased knee swelling, and increased length of hospital stay (LOS) at several follow-up points (p < 0.050). No significant difference was found for postoperative draining volume, total blood loss, transfusion rate, change of Hb level, and risks of deep venous thrombosis and all complications. Conclusions: Tourniquet application could only decrease the intraoperative blood loss but has no effectiveness on the total blood loss and transfusion requirement. On the contrary, it has a reverse effect on the pain score, knee function, ROM, swelling, and LOS.

4.
Opt Express ; 28(24): 35415-35426, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33379656

RESUMEN

With the development of optical information processing technology, image edge enhancement technology has rapidly received extensive attention, especially in the field of quantum imaging. However, quantum edge enhanced imaging faces challenges in terms of time-consuming acquisition processes and the complexity of the devices used, which limits practical applications in real-time usage scenarios. Here we introduce and experimentally demonstrate a real-time (0.5 Hz) quantum edge enhanced imaging method that combines the spiral phase contrast technique with heralded single-photon imaging. The edge enhancement results show high quality and background free from raw data. Compared with direct imaging, our configuration can improve the signal-to-noise ratio significantly using the tight time correlations between photon pairs. The method also offers competitive advantages over ghost imaging, including higher brightness and a compact optical fiber delay rather than a free space delay. Additionally, we explore curved edge enhancement for specific feature recognition and the oriented shadow effect. Overall, this efficient and versatile platform paves an alternative path toward real-time quantum edge detection in applications including nondestructive bio-imaging, night vision and covert monitoring.

5.
Opt Express ; 28(4): 5077-5084, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32121736

RESUMEN

Entangled sources are important components for quantum information science and technology (QIST). The ability to generate high-quality entangled sources will determine the extent of progress in this field. Unlike previous schemes, a thin quasi-phase matching nonlinear crystal and a dense-wave-division-multiplexing device are used here to build high-quality versatile photonic sources with a simple configuration that can be used to perform Hong-Ou-Mandel interference, time-energy entanglement and multi-channel polarization entanglement experiments. The measurement results from various quantum optical experiments show the high quality of these photonic sources. These multi-functional photonic sources will be very useful in a variety of QIST applications.

6.
Opt Lett ; 44(2): 219-222, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30644865

RESUMEN

Vector beams (VBs) are widely investigated for their special intensities and polarization distributions, which are useful in optical micromanipulation, optical microfabrication, optical communication, and single molecule imaging. To date, nonlinear frequency conversion (NFC) and manipulation of VBs remain challenging because of the polarization sensitivity of most nonlinear processes. Here we report an experimental realization of NFC and manipulation of VBs that can be used to expand the available frequency band. The main idea of our scheme is the introduction of a Sagnac loop to solve the polarization dependence problem of NFC in nonlinear crystals. Additionally, we find that a linearly polarized VB should be transformed into a hybrid-polarized VB in exponential form before performing NFC. The experimental results agree well with those of our theoretical model. The proposed method is also applicable to other wavebands and second-order nonlinear processes, and may be generalized to the quantum regime for single photons.

7.
Opt Express ; 26(22): 28429-28440, 2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30470014

RESUMEN

Silicon-on-chip photonic circuits are among some very promising platforms for generating nonclassical photonic quantum state, because of its low loss, small footprint, and compatibility with complementary metal-oxide-semiconductor (CMOS) and telecommunications techniques. Dense wavelength division multiplexing (DWDM) is a leading technique for enhancing the transmission capacity of both classical and quantum communications. To bridge the frequency gap between silicon-chip and other quantum systems, such as quantum memories, a quantum interface is indispensable. Here, we demonstrate a quantum interface for multiplexed energy-time entanglement states, which are generated on a silicon micro-ring cavity that is based on frequency up-conversion. By switching the pump wavelength, energy-time entanglement from any channel can be selected at will after being up-converted. The high visibilities of two-photon interference over three channels after frequency up-conversion clearly prove that the entanglement is fully preserved during the quantum frequency conversion (QFC) process. Our work provides new perspectives regarding channel capacity enhancement in quantum communications and for quantum resources being transferred between two different quantum systems.

8.
Phys Rev Lett ; 120(26): 263601, 2018 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-30004733

RESUMEN

The interferometer is one of the most important devices for revealing the nature of light and for precision optical metrology. Although many experiments were performed for probing photon behavior in various configurations, a complete study of photon behavior in a birefringent interferometer has not been performed, to our knowledge. By using an environmental turbulence immune Mach-Zehnder interferometer, we observe tunable photonic beatings by rotating a birefringent crystal versus the temperature of the crystal for both the single photon and two photons. Furthermore, the two-photon interference fringes beat 2 times faster than the single-photon interference fringes. This beating effect is used to determine the thermal dispersion coefficients of the two principal refractive axes with a single measurement: the two-photon interference shows superresolution and high sensitivity. Obvious differences between two-photon and single-photon interference are also revealed in unbalanced situations. In addition, the influence of the photon bandwidth on the beating behaviors that come from polarization-dependent decoherence is also investigated. Our findings will be important for better understanding the behavior of two-photon interference in a birefringent interferometer and for precision optical metrology with quantum enhancement.

9.
Opt Express ; 25(20): 24290-24298, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-29041374

RESUMEN

In quantum communications, vortex photons can encode higher-dimensional quantum states and build high-dimensional communication networks (HDCNs). The interfaces that connect different wavelengths are significant in HDCNs. We construct a coherent orbital angular momentum (OAM) frequency bridge via difference frequency conversion in a nonlinear bulk crystal for HDCNs. Using a single resonant cavity, maximum quantum conversion efficiencies from visible to infrared are 36%, 15%, and 7.8% for topological charges of 0,1, and 2, respectively. The average fidelity obtained using quantum state tomography for the down-converted infrared OAM-state of topological charge 1 is 96.51%. We also prove that the OAM is conserved in this process by measuring visible and infrared interference patterns. This coherent OAM frequency-down conversion bridge represents a basis for an interface between two high-dimensional quantum systems operating with different spectra.

10.
Opt Express ; 25(9): 10145-10152, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28468389

RESUMEN

Hyper-entangled photon pairs are very promising in the quantum information field for enhancing the channel capacity in communication and improving compatibility for networks. Here we report on the experimental generation of a hyper-entangled photon pair at a wavelength of 795 nm and 1475 nm via the spontaneous four-wave mixing process in a cold 85Rb atomic ensemble. The photons in each pair generated are entangled in both the time-frequency and polarization degrees of freedom. Such hyper-entangled photon pairs with special wavelength have potential applications in high-dimensional quantum communication and quantum physics.

11.
Sci Bull (Beijing) ; 62(17): 1185-1192, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36659512

RESUMEN

Are quantum states real? This most fundamental question in quantum mechanics has not yet been satisfactorily resolved, although its realistic interpretation seems to have been rejected by various delayed-choice experiments. Here, to address this long-standing issue, we present a quantum twisted double-slit experiment. By exploiting the subluminal feature of twisted photons, the real nature of a photon during its time in flight is revealed for the first time. We found that photons' arrival times were inconsistent with the states obtained in measurements but agreed with the states during propagation. Our results demonstrate that wavefunctions describe the realistic existence and evolution of quantum entities rather than a pure mathematical abstraction providing a probability list of measurement outcomes. This finding clarifies the long-held misunderstanding of the role of wavefunctions and their collapse in the evolution of quantum entities.

12.
Nat Commun ; 7: 13514, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27841274

RESUMEN

Entanglement in multiple degrees of freedom has many benefits over entanglement in a single one. The former enables quantum communication with higher channel capacity and more efficient quantum information processing and is compatible with diverse quantum networks. Establishing multi-degree-of-freedom entangled memories is not only vital for high-capacity quantum communication and computing, but also promising for enhanced violations of nonlocality in quantum systems. However, there have been yet no reports of the experimental realization of multi-degree-of-freedom entangled memories. Here we experimentally established hyper- and hybrid entanglement in multiple degrees of freedom, including path (K-vector) and orbital angular momentum, between two separated atomic ensembles by using quantum storage. The results are promising for achieving quantum communication and computing with many degrees of freedom.

13.
Phys Rev Lett ; 117(10): 103601, 2016 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-27636474

RESUMEN

Entanglement is a vital resource for realizing many tasks such as teleportation, secure key distribution, metrology, and quantum computations. To effectively build entanglement between different quantum systems and share information between them, a frequency transducer to convert between quantum states of different wavelengths while retaining its quantum features is indispensable. Information encoded in the photon's orbital angular momentum (OAM) degrees of freedom is preferred in harnessing the information-carrying capacity of a single photon because of its unlimited dimensions. A quantum transducer, which operates at wavelengths from 1558.3 to 525 nm for OAM qubits, OAM-polarization hybrid-entangled states, and OAM-entangled states, is reported for the first time. Nonclassical properties and entanglements are demonstrated following the conversion process by performing quantum tomography, interference, and Bell inequality measurements. Our results demonstrate the capability to create an entanglement link between different quantum systems operating in a photon's OAM degrees of freedom, which will be of great importance in building a high-capacity OAM quantum network.

14.
Eur J Orthop Surg Traumatol ; 25(3): 525-41, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25430635

RESUMEN

BACKGROUND: Tranexamic acid (TXA) is well established as a versatile intraarticular and intravenous (IV) antifibrinolytic agent that has been successfully used to control bleeding after total knee arthroplasty (TKA). The present meta-analysis aimed at assessing the effectiveness and safety of TXA in reducing blood loss and transfusion in TKA. METHODS: We searched the PubMed, Medline, Embase, Cochrane Central Register of Controlled Trials, and Google Scholar databases from 1966 to December 2013. Only randomized controlled trials (RCTs) were included in the present study. Two independent reviewers identified the eligible studies, assessed their methodological quality, and extracted data. The data were using fixed-effects or random-effects models with standard mean differences and risk ratios for continuous and dichotomous variables, respectively. Subgroup analysis was performed according to the IV or intraarticular administration of TXA. RESULTS: Thirty-four RCTs encompassing 2,594 patients met the inclusion criteria for our meta-analysis. Our meta-analysis indicated that when compared with the control group, the IV or intraarticular use of TXA significantly reduced total blood loss, postoperative blood loss, Hb loss, and transfusion rate as well as blood units transfused per patient after primary TKA, but did not reduce intraoperative blood loss. No significant difference in deep vein thrombosis (DVT), pulmonary embolism, or other adverse events among the study groups. CONCLUSIONS: IV or intraarticular use of TXA for patients undergoing TKA is effective and safe for the reduction blood loss and blood transfusion requirements, yet does not increase the risk of postoperative DVT. LEVEL OF EVIDENCE: Level II.


Asunto(s)
Antifibrinolíticos/administración & dosificación , Artroplastia de Reemplazo de Rodilla/métodos , Pérdida de Sangre Quirúrgica/prevención & control , Hemorragia Posoperatoria/prevención & control , Ácido Tranexámico/administración & dosificación , Administración Intravenosa , Antifibrinolíticos/efectos adversos , Transfusión Sanguínea , Hemoglobinas/metabolismo , Humanos , Inyecciones Intraarticulares , Ensayos Clínicos Controlados Aleatorios como Asunto , Ácido Tranexámico/efectos adversos
15.
Yao Xue Xue Bao ; 49(7): 1049-53, 2014 Jul.
Artículo en Chino | MEDLINE | ID: mdl-25233639

RESUMEN

The fine structure of enoxaparin sodium samples with different degree of 1,6-anhydro derivatives were analyzed with polyacrylamide gel electrophoresis, high performance liquid chromatography, ultraviolet spectroscopy, infrared spectroscopy and nuclear magnetic resonance spectroscopy. A further study of anticoagulation activity of enoxaparins was performed, including those on their inhibition activities of coagulation factor Xa (FXa) and thrombin (FIIa). The results showed that the anti-FXa and -FIIa activities of enoxaparins with different degree of 1,6-anhydro derivatives (20.0%-39.7%) with similar structure characteristics, had decreasing tendency when the degree of 1,6-anhydro derivatives increased. Especially, the anti-FXa activity was sensitive to the change of the degree of 1,6-anhydro derivatives.


Asunto(s)
Anticoagulantes/química , Enoxaparina/química , Inhibidores del Factor Xa/química , Trombina/antagonistas & inhibidores
16.
Space Med Med Eng (Beijing) ; 17(5): 360-4, 2004 Oct.
Artículo en Chino | MEDLINE | ID: mdl-15926235

RESUMEN

OBJECTIVE: To study the stochastic resonance phenomenon in biological sensory systems through signal detection theories and psychophysical experiments. METHOD: Sensory system is considered as threshold detectors including the receiver part and the classifier part. Compared with conventional models regarding the receiver part of the sensory system as a linear or single non-linear system, a summing network constructed by MacCulloch-Pitts neurons was provided in our model to simulate the receiver part. RESULT: The simulation results showed that the relevant indices of the percent correct measure and the detectability of signal both exhibit stochastic resonance behaviors. Psychophysical experiments were carried out through both 1IFC (one interval forced choice) and 2IFC (two interval alternative forced choice) methods. The experimental results qualitatively verified the considerations in accordance with the theoretical model. CONCLUSION: This work gives a proof that stochastic resonance is not only an epiphenomenon in sensory systems.


Asunto(s)
Modelos Neurológicos , Umbral Sensorial , Detección de Señal Psicológica , Procesos Estocásticos , Redes Neurales de la Computación , Psicofísica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA