Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Mol Carcinog ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279723

RESUMEN

Inhibitor of ß-catenin and T-cell factor (ICAT) is a classical inhibitor of the Wnt signaling pathway. Nonetheless, our previous work found that ICAT is overexpressed in cervical cancer (CC), resulting in the augmentation of migration and invasion capabilities of CC cells. It remains unclear what molecular mechanism underlies this phenomenon. The interaction between cancer cells and the tumor microenvironment (TME) promotes the outgrowth and metastasis of tumors. Tumor-associated macrophages (TAMs) are a major constituent of the TME and have a significant impact on the advancement of CC. Consequently, our inquiry pertains to the potential of ICAT to facilitate tumor development through its modulation of the cervical TME. In this study, we first verified that ICAT regulated the secretion of cytokines interleukin-10 (IL-10) and transforming growth factor-ß (TGF-ß) in CC cells, leading to M2-like macrophage polarization and enhancement of the migration and invasion of CC cells. Furthermore, the system of co-culturing human umbilical vein endothelial cells (HUVECs) with macrophages revealed that depending on the CC cells' overexpression or inhibition of ICAT, the vascular tube formation by HUVECs can be either increased or decreased. Overall, our study indicates that ICAT stimulates M2-like polarization of TAMs via upregulating IL-10 and TGF-ß, which results in increased neovascularization, tumor metastasis, and immunosuppression in CC. In upcoming times, inhibiting crosstalk between CC cells and TAMs may be a possible strategy for CC therapy.

2.
J Hazard Mater ; 478: 135427, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39116741

RESUMEN

Microbial metabolism is an important driving force for the elimination of 4-chlorophenoxyacetic acid residues in the environment. The α-Ketoglutarate-dependent dioxygenase (TfdA) or 2,4-D oxygenase (CadAB) catalyzes the cleavage of the aryl ether bond of 4-chlorophenoxyacetic acid to 4-chlorophenol, which is one of the important pathways for the initial metabolism of 4-chlorophenoxyacetic acid by microorganisms. However, strain Cupriavidus sp. DL-D2 could utilize 4-chlorophenoxyacetic acid but not 4-chlorophenol for growth. This scarcely studied degradation pathway may involve novel enzymes that has not yet been characterized. Here, a gene cluster (designated cpd) responsible for the catabolism of 4-chlorophenoxyacetic acid in strain DL-D2 was cloned and identified, and the dioxygenase CpdA/CpdB responsible for the initial degradation of 4-chlorophenoxyacetic acid was successfully expressed, which could catalyze the conversion of 4-chlorphenoxyacetic acid to 4-chlorocatechol. Then, an aromatic cleavage enzyme CpdC further converts 4-chlorocatechol into 3-chloromuconate. The results of substrate degradation experiments showed that CpdA/CpdB could also degrade 3-chlorophenoxyacetic acid and phenoxyacetic acid, and homologous cpd gene clusters were widely discovered in microbial genomes. Our findings revealed a novel degradation mechanism of 4-chlorophenoxyacetic acid at the molecular level.


Asunto(s)
Cupriavidus , Dioxigenasas , Herbicidas , Dioxigenasas/metabolismo , Dioxigenasas/genética , Cupriavidus/metabolismo , Cupriavidus/genética , Cupriavidus/enzimología , Herbicidas/metabolismo , Herbicidas/química , Familia de Multigenes , Clorofenoles/metabolismo , Biodegradación Ambiental , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Ácido 2,4-Diclorofenoxiacético/análogos & derivados
3.
Heliyon ; 10(15): e35162, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39157342

RESUMEN

The advancement of intelligent manufacturing technology in the era of Industry 5.0 has propelled the intelligence and automation of manufacturing production, while also exerting a significant impact on sustainable development of the manufacturing industry. However, the challenges and enablers faced by the transformation of intelligent manufacturing technology in the context of sustainable development of Industry 5.0 are still unclear. Based on literature review and expert opinions, this study uses the Likert scale to determine the challenges and enablers of the implementation of intelligent manufacturing technology in social, environmental and economic sustainability. The fuzzy-DEMETAL and AISM are used to analyze the logical relationship and hierarchical relationship between the above factors, and the MICMAC matrix is used to determine the key influencing factors. The research conclusions show that the most important challenges affecting the implementation of intelligent manufacturing technology are cost and funding, and the most important enabler is social benefits and public service improved. This research will provide insights for industry practitioners and decision makers in the management and decision-making process of implementing the transformation and upgrading of manufacturing intelligent manufacturing, thereby enhancing the sustainability of manufacturing development.

4.
Sci Total Environ ; 947: 174647, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38986699

RESUMEN

Anthropogenic activities could significantly increase nutrients loading, especially phosphorus (P), into aquatic systems, leading to eutrophication and disturbance of ecosystems. Detailed investigation of P cycling and its controlling factors in modern lakes could help understand mechanisms behind eutrophication, thus provide suggestions for future environmental management. Here, we investigate evolution history of P and iron (Fe) cycling over the last ∼300 years in west Chaohu Lake, a typical eutrophic lake in East China. The combination of 210Pb-137Cs dating and elemental analysis demonstrates drastic escalation of P input and organic carbon burial since 1960s, coincided with the rapid growth of human population near this region. P phase partitioning data indicate that Fe-bound P (PFe) is the predominant P pool of sediments in Chaohu Lake, which also regulates the evolving trend of reactive P (Preac). Moreover, the highest fraction of PFe is consistent with observations via P K-edge X-ray absorption near edge structure (P XANES). In addition, Fe speciation results show a principal contribution of Fe (hydr)oxides (Feox) and negligible presence of pyrite, suggesting a generally oxygenated depositional environment, where P could be preferentially sequestrated in sediments in association with Fe oxide minerals. Relatively high molar organic carbon/organic P (Corg/Porg) but low Corg/Preac ratios also support limited recycling of Preac in west Chaohu Lake. This study reveals that human activities play an important role in leading to the eutrophication of Chaohu Lake. Future environmental management could utilize the coupling of P and Fe oxides to remove P from water column.

5.
Biology (Basel) ; 13(7)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39056724

RESUMEN

Sleep disturbances can disrupt the overall circadian rhythm. However, the impact of sleep deprivation on the circadian rhythm of the liver and its underlying mechanisms still requires further exploration. In this study, we subjected male mice to 5 days of sleep deprivation and performed liver transcriptome sequencing analysis at various time points within a 24-h period. Subsequently, we monitored the autonomic activity and food intake in these male mice for six days post-sleep deprivation. We observed alterations in sleep-wake and feeding rhythms in the first two days following sleep deprivation. Additionally, we also observed a decrease in 24-h serum-glucose levels. Liver transcriptome sequencing has shown that sleep deprivation induces the rhythmic transcription of a large number of genes, or alters the rhythmic properties of genes, which were then significantly enriched in the carbohydrate, lipid, and protein metabolism pathways. Our findings suggest that under conditions of prolonged sleep deprivation, the expression of metabolic-related genes in the liver was reset, leading to changes in the organism's metabolic state to ensure energy supply to sustain prolonged wakefulness.

6.
New Phytol ; 242(5): 2077-2092, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38494697

RESUMEN

Rice is susceptible to chilling stress. Identifying chilling tolerance genes and their mechanisms are key to improve rice performance. Here, we performed a genome-wide association study to identify regulatory genes for chilling tolerance in rice. One major gene for chilling tolerance variation in Indica rice was identified as a casein kinase gene OsCTK1. Its function and natural variation are investigated at the physiological and molecular level by its mutants and transgenic plants. Potential substrates of OsCTK1 were identified by phosphoproteomic analysis, protein-protein interaction assay, in vitro kinase assay, and mutant characterization. OsCTK1 positively regulates rice chilling tolerance. Three of its putative substrates, acidic ribosomal protein OsP3B, cyclic nucleotide-gated ion channel OsCNGC9, and dual-specific mitogen-activated protein kinase phosphatase OsMKP1, are each involved in chilling tolerance. In addition, a natural OsCTK1 chilling-tolerant (CT) variant exhibited a higher kinase activity and conferred greater chilling tolerance compared with a chilling-sensitive (CS) variant. The CT variant is more prevalent in CT accessions and is distributed more frequently in higher latitude compared with the CS variant. This study thus enables a better understanding of chilling tolerance mechanisms and provides gene variants for genetic improvement of chilling tolerance in rice.


Asunto(s)
Frío , Oryza , Proteínas de Plantas , Adaptación Fisiológica/genética , Genes de Plantas , Variación Genética , Estudio de Asociación del Genoma Completo , Mutación/genética , Oryza/genética , Oryza/enzimología , Oryza/fisiología , Fosforilación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Especificidad por Sustrato
7.
Neuroscience ; 542: 11-20, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38336096

RESUMEN

Lactate acts as an important metabolic substrate and signalling molecule modulating neural activities in the brain, and recent preclinical and clinical studies have revealed its antidepressant effect after acute or chronic peripheral administration. However, the neural mechanism underlying the antidepressant effect of lactate, in particular when lactate is acutely administered remains largely unknown. In the current study, we focused on forced swimming test (FST) to elucidate the neural mechanisms through which acute intracerebroventricular (ICV) infusion of lactate exerts antidepressant-like effect. A total of 238 male Sprague Dawley rats were used as experimental subjects. Results showed lactate produced antidepressant-like effect, as indicated by reduced immobility, in a dose- and time-dependent manner. Moreover, the antidepressant-like effect of lactate was dependent of new protein synthesis but not new gene expression, lactate's metabolic effect or hydroxy-carboxylic acid receptor 1 (HCAR1) activation. Furthermore, lactate rapidly promoted dephosphorylation of eukaryotic elongation factor 2 (eEF2) and increased brain-derived neurotrophic factor (BDNF) protein synthesis in the hippocampus in a cyclic adenosine monophosphate (cAMP)-dependent manner. Finally, inhibition of cAMP production blocked the antidepressant-like effect of lactate. These findings suggest that acute administration of lactate exerts antidepressant-like effect through cAMP-dependent protein synthesis.


Asunto(s)
Depresión , Ácido Láctico , Humanos , Ratas , Animales , Masculino , Depresión/tratamiento farmacológico , Ácido Láctico/metabolismo , Ratas Sprague-Dawley , Antidepresivos , Natación , AMP Cíclico/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/metabolismo
8.
Nanotechnology ; 35(1)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37788663

RESUMEN

The electrodeposition method has recently been developed for the fabrication of perovskite solar cells due to its potential advantages in commercial preparation. However, there is few studies on the preparation of perovskite solar cells by the electrodeposition method, especially on the perovskite FAPbI3-based solar cells. Herein, we fabricated the mixed perovskite FA1-yCsyPbBrxI3-xsolar cells by an optimized electrodeposition method, in which the electrodeposited PbO2reacts directly with FAI and an appropriate amount of CsBr dopants. The corresponding solar cells display the best PCE of 4.97%. By regulating the growth temperature in the reaction between PbO2and FAI/CsBr, the efficiency of the mixed perovskite solar cells can be promoted to 10.18%. These results illustrate that the element doping and growth environment regulation can optimize the quality of the perovskite films, thus promoting the efficiency of the perovskite solar cells. With further optimizing the growth process in the electrodeposition method, it is expected to open up a new commercial preparation route for the perovskite solar cells in the near future.

9.
BMC Nurs ; 22(1): 382, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833692

RESUMEN

BACKGROUND: Psychiatric nurses play a crucial role in treating and supporting adolescents with non-suicidal self-injury (NSSI) in China. However, few studies have explored their experiences and challenges. OBJECTIVES: The aim of this qualitative study was to describe the challenges experienced by psychiatric nurses when working with adolescents having NSSI behaviors. METHODS: This was a descriptive qualitative study using phenomenological approach. 18 psychiatric nurses from psychiatric wards were recruited from a tertiary hospital from Changsha, Hunan province, China. In-depth interview was performed for each participant collecting information about their feelings and experiences taking care of NSSI adolescents. ATLAS.ti 8 was used to enter data and perform thematic analysis following the six-phased process described by Braun and Clarke. RESULTS: Two main themes and five sub-themes were summarized in this study. Nurses experienced both (1) Internal challenges (Lacking knowledge and skills to deal with NSSI adolescents and Feeling hard and stressful working with NSSI adolescents) and (2) External barriers (Unrealistic high expectations from family and schools, Uncooperative parents and Little help from communities and schools). CONCLUSIONS: Psychiatric nurses had to face with their own negative feelings, insufficient knowledge and skills, alongside with pressures and little help from family, schools and communities when working with NSSI adolescents. Targeted training programs of treating NSSI adolescents and their supporting systems be performed in nurses, furthermore, family, schools and societies should also be raised.

10.
Int J Biol Macromol ; 253(Pt 3): 126949, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37722635

RESUMEN

Members of the transforming growth factor ß (TGF-ß) signaling pathway regulate diverse cellular biological processes in embryonic and tissue development. We took mandarin fish (Siniperca chuatsi) as the research object to identify all members of the TGF-ß signaling pathway, measure their expression pattern in the key period post hatching, and further explore their possible role in the process of sex regulation. Herein, we identified eighty-three TGF-ß signaling pathway members and located them on chromosomes based on the genome of mandarin fish. TGF-ß signaling pathway members were highly conserved since each TGF-ß subfamily clustered with orthologs from other species. Transcriptome analysis, qRT-PCR and in situ hybridization demonstrated that most mandarin fish TGF-ß signaling pathway members presented stage-specific and/or sex-dimorphic expression during gonadal development, and different members of the TGF-ß signaling pathway participated in different stages of gonadal development. Taken together, our results provide new insight into the role of TGF-ß signaling pathway members in the sex regulation of mandarin fish.


Asunto(s)
Peces , Perciformes , Animales , Peces/genética , Peces/metabolismo , Perfilación de la Expresión Génica , Transducción de Señal , Factor de Crecimiento Transformador beta/genética , Perciformes/genética , Perciformes/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-37579624

RESUMEN

The wild Coreoperca whiteheadi is considered as the primordial species in sinipercine fish, which has valuable genetic information. Unfortunately, C. whiteheadi was listed as a near-threatened species because of the environmental pollution, over-exploitation and species invasion. Therefore, more genetic information is needed to have a better understanding of gonadal development in C. whiteheadi. Here, the first gonadal transcriptomes analysis of C. whiteheadi was conducted and 277.14 million clean reads were generated. A total of 96,753 unigenes were successfully annotated. By comparing ovary and testis transcriptomes, a total of 21,741 differentially expressed genes (DEGs) were identified, of which 12,057 were upregulated and 9684 were downregulated in testes. Among them, we also identified about 53 differentially expressed sex-biased genes. Subsequently, the expression of twenty-four DEGs were confirmed by real-time fluorescence quantitative PCR. Furthermore, the histological analysis was conducted on ovaries and testes of one-year-old C. whiteheadi. Our results provided basic support for further studies on the function of sex-biased genes and the molecular mechanism of sex determination and reproduction in C. whiteheadi.


Asunto(s)
Gónadas , Transcriptoma , Femenino , Masculino , Animales , Gónadas/metabolismo , Perfilación de la Expresión Génica , Ovario/metabolismo , Testículo/metabolismo , Peces/genética
12.
Autophagy ; 19(12): 3256-3257, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37599472

RESUMEN

Calcium is involved in a variety of cellular processes. As the crucial components of cell membranes, sphingolipids also play important roles as signaling molecules. Intracellular calcium homeostasis, autophagy initiation and sphingolipid synthesis are associated with the endoplasmic reticulum (ER). Recently, through genetic screening and lipidomics analysis in Saccharomyces cerevisiae, we found that the ER calcium channel Csg2 converts sphingolipid metabolism into macroautophagy/autophagy regulation by controlling ER calcium homeostasis. The results showed that Csg2 acts as a calcium channel to mediate ER calcium efflux into the cytoplasm, and deletion of CSG2 causes a distinct increase of ER calcium concentration, thereby disrupting the stability of the sphingolipid synthase Aur1, leading to the accumulation of the bioactive sphingolipid phytosphingosine (PHS), which specifically and completely blocks autophagy. In summary, our work links calcium homeostasis, sphingolipid metabolism, and autophagy initiation via the ER calcium channel Csg2.


Asunto(s)
Autofagia , Calcio , Calcio/metabolismo , Esfingolípidos , Saccharomyces cerevisiae/metabolismo , Retículo Endoplásmico/metabolismo , Canales de Calcio/metabolismo , Homeostasis
13.
Animals (Basel) ; 13(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37508032

RESUMEN

Due to the high meat yield and rich nutritional content, jade perch (Scortum barcoo) has become an important commercial aquaculture species in China. Jade perch has a slow growth rate, taking 3-4 years to reach sexual maturity, and has almost no difference in body size between males and females. However, the study of its gonad development and reproduction regulation is still blank, which limited the yield increase. Herein, the gonad transcriptomes of juvenile males and females of S. barcoo were identified for the first time. A total of 107,060 unigenes were successfully annotated. By comparing male and female gonad transcriptomes, a total of 23,849 differentially expressed genes (DEGs) were identified, of which 9517 were downregulated, and 14,332 were upregulated in the testis. In addition, a large number of DEGs involved in sex differentiation, gonadal development and differentiation and gametogenesis were identified, and the differential expression patterns of some genes were further verified using real-time fluorescence quantitative PCR. The results of this study will provide a valuable resource for further studies on sex determination and gonadal development of S. barcoo.

14.
Nutrients ; 15(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37432260

RESUMEN

Sulforaphane (SFN), an isothiocyanate, is one of the major dietary phytochemicals found in cruciferous vegetables. Many studies suggest that SFN can protect against cancer and cardiometabolic diseases. Despite the proposed systemic and local vascular protective mechanisms, SFN's potential to inhibit atherogenesis by targeting macrophages remains unknown. In this study, in high fat diet fed ApoE-deficient (ApoE-/-) mice, oral SFN treatment improved dyslipidemia and inhibited atherosclerotic plaque formation and the unstable phenotype, as demonstrated by reductions in the lesion areas in both the aortic sinus and whole aorta, percentages of necrotic cores, vascular macrophage infiltration and reactive oxygen species (ROS) generation. In THP-1-derived macrophages, preadministration SFN alleviated oxidized low-density lipoprotein (ox-LDL)-induced lipid accumulation, oxidative stress and mitochondrial injury. Moreover, a functional study revealed that peritoneal macrophages isolated from SFN-treated mice exhibited attenuated cholesterol influx and enhanced apolipoprotein A-I (apoA-I)- and high-density lipoprotein (HDL)-mediated cholesterol efflux. Mechanistic analysis revealed that SFN supplementation induced both intralesional and intraperitoneal macrophage phenotypic switching toward high expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and ATP-binding cassette subfamily A/G member 1 (ABCA1/G1) and low expression of peroxisome proliferator-activated receptor γ (PPARγ) and cluster of differentiation 36 (CD36), which was further validated by the aortic protein expression. These results suggest that the regulation of macrophages' cholesterol transport and accumulation may be mainly responsible for SFN's potential atheroprotective properties, and the regulatory mechanisms might involve upregulating ABCA1/G1 and downregulating CD36 via the modulation of PPARγ and Nrf2.


Asunto(s)
Aterosclerosis , Células Espumosas , Animales , Ratones , Factor 2 Relacionado con NF-E2 , PPAR gamma , Macrófagos , Isotiocianatos/farmacología , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/etiología , Aterosclerosis/prevención & control
15.
Nat Commun ; 14(1): 3725, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349354

RESUMEN

Sphingolipids are ubiquitous components of membranes and function as bioactive lipid signaling molecules. Here, through genetic screening and lipidomics analyses, we find that the endoplasmic reticulum (ER) calcium channel Csg2 integrates sphingolipid metabolism with autophagy by regulating ER calcium homeostasis in the yeast Saccharomyces cerevisiae. Csg2 functions as a calcium release channel and maintains calcium homeostasis in the ER, which enables normal functioning of the essential sphingolipid synthase Aur1. Under starvation conditions, deletion of Csg2 causes increases in calcium levels in the ER and then disturbs Aur1 stability, leading to accumulation of the bioactive sphingolipid phytosphingosine, which specifically and completely blocks autophagy and induces loss of starvation resistance in cells. Our findings indicate that calcium homeostasis in the ER mediated by the channel Csg2 translates sphingolipid metabolism into autophagy regulation, further supporting the role of the ER as a signaling hub for calcium homeostasis, sphingolipid metabolism and autophagy.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Autofagia , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esfingolípidos/metabolismo
16.
Nanomaterials (Basel) ; 13(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37299643

RESUMEN

In this paper, the effect of atomic layer deposition (ALD)-derived Al2O3 passivation layers and annealing temperatures on the interfacial chemistry and transport properties of sputtering-deposited Er2O3 high-k gate dielectrics on Si substrate has been investigated. X-ray photoelectron spectroscopy (XPS) analyses have showed that the ALD-derived Al2O3 passivation layer remarkably prevents the formation of the low-k hydroxides generated by moisture absorption of the gate oxide and greatly optimizes the gate dielectric properties. Electrical performance measurements of metal oxide semiconductor (MOS) capacitors with different gate stack order have revealed that the lowest leakage current density of 4.57 × 10-9 A/cm2 and the smallest interfacial density of states (Dit) of 2.38 × 1012 cm-2 eV-1 have been achieved in the Al2O3/Er2O3/Si MOS capacitor, which can be attributed to the optimized interface chemistry. Further electrical measurements of annealed Al2O3/Er2O3/Si gate stacks at 450 °C have demonstrated superior dielectric properties with a leakage current density of 1.38 × 10-9 A/cm2. At the same, the leakage current conduction mechanism of MOS devices under various stack structures is systematically investigated.

17.
Dalton Trans ; 52(19): 6284-6289, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37083108

RESUMEN

Construction of a heterojunction between quantum dots and TiO2 nanowire arrays via electrostatic self-assembly is rarely reported. In this work, mercury lamp irradiation was used to change the surface potential of WO3 quantum dots and TiO2 nanowire arrays, resulting in WO3 quantum dots tightly attached on the surface of TiO2 nanowire through electrostatic self-assembly. Photoelectrochemical measurements showed that the WO3 quantum dots formed a type II heterojunction with the TiO2 nanowire arrays rather than serving as carrier-trapping sites. In the self-assembly system, the TiO2 nanowire arrays provide a charge-transfer channel for the WO3 quantum dots, greatly improving the contribution of the WO3 quantum dots to the photocurrent. Quantitative calculations showed that the improvement of the bulk carrier-separation efficiency was the reason for the enhanced photoelectrochemical performance of the self-assembled system. The photocurrent density of the optical self-assembled system at 1.23 V (vs. RHE) was ∼5.5 times as high as that of the TiO2 nanowire arrays. More importantly, the self-assembled system exhibited excellent photoelectrochemical stability.

18.
Phys Rev Lett ; 130(9): 091402, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36930936

RESUMEN

Neutrino emission in coincidence with gamma rays has been observed from the blazar TXS 0506+056 by the IceCube telescope. Neutrinos from the blazar had to pass through a dense spike of dark matter (DM) surrounding the central black hole. The observation of such a neutrino implies new upper bounds on the neutrino-DM scattering cross section as a function of DM mass. The constraint is stronger than existing ones for a range of DM masses, if the cross section rises linearly with energy. For constant cross sections, competitive bounds are also possible, depending on details of the DM spike.

19.
Tissue Cell ; 82: 102073, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36963166

RESUMEN

We previously reported that BMP9 inhibited breast cancer progression. However, the precise molecular mechanism is still unknown. Based on our RNA-sequencing (RNA-seq) results, BMP9 significantly down-regulated the expression of long non-coding RNA SNHG3. Exogenous BMP9 promoted autophagy and inhibited migration and invasion in MDA-MB-231 cells, which was effectively blunted by SNHG3 overexpression. Interestingly, SNHG3 was negatively connected with autophagy. Knockdown of SNHG3 induced autophagy by increasing the formation of autophagic vacuoles and thus inhibited the migration and invasion of MDA-MB-231 cells. Mechanically, BMP9-SNHG3 activated AMPK, AKT and mTOR signaling pathways to induce autophagy and inhibit migration and invasion. Meanwhile, BMP9 regulated SNHG3 transcription by suppressing c-Myc entry into the nucleus. In conclusion, BMP9 promotes autophagy and inhibits migration and invasion in breast cancer cells through the c-Myc/SNHG3/mTOR signaling axis, which might offer a fresh perspective on BMP9's breast cancer-inhibiting properties.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Autofagia/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
20.
Carcinogenesis ; 44(3): 221-231, 2023 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-36847693

RESUMEN

Cervical cancer (CC) remains one of the most common female malignancies, with higher incidence and mortality rates. more than 99% of CCs are associated with persistent infection with high-risk human papillomavirus. In view of the growing evidence that HPV 16 E6 and E7, two key oncoproteins encoded by HPV 16, regulate the expression of many other multifunctional genes and downstream effectors that contribute to the development of CC. Herein, we undertook a comprehensive effort into how HPV16 E6, E7 oncogenes affect the progression of CC cells. Previous studies have shown that ICAT expression was significantly increased in CC and had a pro-cancer effect. We observed that knockdown of HPV16 E6, E7 expression in SiHa and CasKi cells resulted in significant inhibition of ICAT expression and upregulation of miR-23b-3p expression. Besides, dual luciferase assays confirmed that ICAT was a target gene of miR-23b-3p, and negatively modulated by miR-23b-3p. Functional experiments showed that the overexpression of miR-23b-3p suppressed malignant behaviors of CC cells, such as migration, invasion and EMT. The overexpression of ICAT counteracted the suppressive effect of miR-23b-3p on HPV16-positive CC cells. Furthermore, after the knockdown of HPV16 E6 and E7, the inhibition of miR-23b-3p could increase the ICAT expression and rescue the siRNA HPV16 E6, E7-mediated suppressive impact on the aggressiveness of SiHa and CaSki cells. Collectively, our findings uncover that HPV16 E6, E7/miR-23b-3p/ ICAT axis plays an important role in HPV16-positive CC pathogenesis, which may serve as a promising therapeutic target for HPV16-associated CC.


Asunto(s)
MicroARNs , Proteínas Oncogénicas Virales , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/patología , Papillomavirus Humano 16/genética , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Proliferación Celular/genética , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...