Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Fish Biol ; 94(2): 223-230, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30565702

RESUMEN

This study provides a comprehensive description of chondrocranial development before, during and after larval metamorphosis in the tongue sole Cynoglossus semilaevis, a commercially valuable flatfish in China. Samples were collected at regular intervals ranging from 1 to 23 days post hatching (dph). Based on observations of cleared and double-stained specimens and images from sections stained with safranin O-fast green, major morphological events during early development were described. No cartilaginous structure was visible at hatching. From 2 dph onwards, cartilaginous structures such as the trabecular bar and some elements of the mandibular, hyoid and branchial arches appeared. At this time also, cartilaginous structures of the neurocranium started to form. Hypertrophic chondrocytes could be observed in many splanchnocranium elements at 5 dph. The start of ossification was indicated by alizarin red stain visible at 14 dph. At 17 dph, most of the cartilaginous skeleton was ossified. Soon after, the right eye started to migrate and pass through a slit beneath the dorsal-fin base and above the skull. Metamorphosis was complete at 20 dph, at which time the dorsal-fin base cartilage extended onto the anterior region of the head. Meanwhile, extremities of the hyoid and branchial arch elements remained cartilaginous. At 23 dph, endochondral ossification of the splanchnocranium was nearly complete. Unlike previous observations of other Pleuronectiformes, our study indicates that endochondral ossification of C. semilaevis skull cartilage occurs before metamorphosis.


Asunto(s)
Cartílago/crecimiento & desarrollo , Lenguado/crecimiento & desarrollo , Metamorfosis Biológica , Cráneo/crecimiento & desarrollo , Animales , Región Branquial/crecimiento & desarrollo , China , Peces Planos , Lenguado/anatomía & histología , Mandíbula/crecimiento & desarrollo , Osteogénesis
2.
Chest ; 147(4): 969-978, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25375801

RESUMEN

BACKGROUND: Although the mechanisms and pathways mediating ARDS have been studied extensively, less attention has been given to the mechanisms and pathways that counteract injury responses. This study found that the apelin-APJ pathway is an endogenous counterinjury mechanism that protects against ARDS. METHODS: Using a rat model of oleic acid (OA)-induced ARDS, the effects of ARDS on apelin and APJ receptor expressions and on APJ receptor binding capacity were examined. The protective effect of activating the apelin-APJ pathway against OA- or lipopolysaccharide (LPS)-induced ARDS was evaluated. RESULTS: ARDS was coupled to upregulations of the apelin and APJ receptor. Rats with OA-induced ARDS had higher lung tissue levels of apelin proprotein and APJ receptor expressions; elevated plasma, BAL fluid (BALF), and lung tissue levels of apelin-36 and apelin-12/13; and an increased apelin-APJ receptor binding capacity. Upregulation of the apelin-APJ system has important pathophysiologic function. Stimulation of the apelin-APJ signaling using receptor agonist apelin-13 alleviated, whereas inhibition of the apelin-APJ signaling using receptor antagonist [Ala]-apelin-13 exacerbated, OA-induced lung pathologies, extravascular lung water accumulation, capillary-alveolar leakage, and hypoxemia. The APJ receptor agonist inhibited, and the APJ receptor antagonist augmented, OA-induced lung tissue and BALF levels of tumor necrosis factor-α and monocyte chemoattractant protein-1, and plasma and lung tissue levels of malondialdehyde. Postinjury treatment with apelin-13 alleviated lung inflammation and injury and improved oxygenation in OA- and LPS-induced lung injury. CONCLUSIONS: The apelin-APJ signaling pathway is an endogenous anti-injury and organ-protective mechanism that is activated during ARDS to counteract the injury response and to prevent uncontrolled lung injury.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Receptores Acoplados a Proteínas G/biosíntesis , Regulación hacia Arriba , Lesión Pulmonar Aguda/prevención & control , Adipoquinas , Animales , Apelina , Receptores de Apelina , Líquido del Lavado Bronquioalveolar/química , Modelos Animales de Enfermedad , Masculino , Ratas , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...