Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Discov Med ; 36(185): 1231-1240, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38926109

RESUMEN

BACKGROUND: Cutaneous melanoma is a malignant tumor with an increasing incidence, prone to recurrence and metastasis. This study aims to explore the effects and mechanisms of the novel shikonin derivative 5,8-dimethyl alkannin oxime derivative (DMAKO-20) on the metastasis and invasion of melanoma cells. METHODS: The inhibitory effects of DMAKO-20 on the melanoma cell line A375 were investigated through Cell Counting Kit-8 (CCK-8), Transwell and angiogenesis experiments. Network pharmacology and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were employed to explore potential sites and pathways involved in this process. Additionally, quantitative polymerase chain reaction (qPCR) and Western blot experiments were conducted before and after drug treatment to verify the expression trends of related pathways and proteins. RESULTS: DMAKO-20 demonstrated selective inhibition of proliferation, invasion and migration of melanoma cells at low concentrations. The WNT pathway appears to be implicated in this process, as DMAKO-20 effectively attenuates its activation, consequently reducing matrix metalloproteinase 9 (MMP9) and Cellular Communication Network Factor 1 (CCN1)/cysteine-rich angiogenic inducer 61 (CYR61) levels. Such modulation inhibits melanoma dissemination and invasion into other tissues. CONCLUSION: DMAKO-20 exhibits the capability to suppress metastasis and invasion of melanoma cells, suggesting its potential for clinical application as an adjuvant therapy against melanoma.


Asunto(s)
Movimiento Celular , Proliferación Celular , Melanoma , Naftoquinonas , Invasividad Neoplásica , Humanos , Naftoquinonas/farmacología , Naftoquinonas/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Metástasis de la Neoplasia , Vía de Señalización Wnt/efectos de los fármacos , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Melanoma Cutáneo Maligno
2.
Chemosphere ; 339: 139708, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37536533

RESUMEN

Triclosan (TCS), a broad-spectrum antibacterial chemical, has been extensively used in personal daily care items, household commodities, and clinical medications; therefore, humans are at risk of being exposed to TCS in their daily lives. This chemical also accumulated in food chains, and potential risks were associated with its metabolism in vivo. The aim of this study was to investigate the difference in metabolic profile of TCS by hepatic P450 enzymes and extrahepatic P450s, and also identify chemical structures of its metabolites. The results showed that RLM mediated the hydroxylation and cleavage of the ether moiety of TCS, resulting in phenolic metabolites that are more polar than the parent compound, including 4-chlorocatechol, 2,4-dichlorophenol and monohydroxylated triclosan. The major metabolite of CYP1A1 and CYP1B1 mediated TCS metabolism is 4-chlorochol. We also performed molecular docking experiments to investigate possible binding modes of TCS in the active sites of human CYP1B1, CYP1A1, and CYP3A4. In addition to in vitro experiments, we further examined the cytotoxic effects of TCS on HepG2 cells expressing hepatic P450 and MCF-7/1B1 cells expressing CYP1B1. It exhibited significant cytotoxicity on HepG2, MCF-10A and MCF-7/1B1 cells, with IC50 values of 70 ± 10 µM, 20 ± 10 µM and 60 ± 20 µM, respectively. The co-incubation of TCS with glutathione (GSH) as a chemopreventive agent could reduce the cytotoxicity of TCS in vitro. The chemopreventive effects of GSH might be ascribed to the promotion of TCS efflux mediated by membrane transporter MRP1 and also its antioxidant property, which partially neutralized the oxidative stress of TCS on mammalian cells. This study contributed to our understanding of the relationship between the P450 metabolism and the toxicity of TCS. It also had implications for the use of specific chemopreventive agents against the toxicity of TCS.


Asunto(s)
Triclosán , Animales , Humanos , Triclosán/toxicidad , Triclosán/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Simulación del Acoplamiento Molecular , Sistema Enzimático del Citocromo P-450/metabolismo , Fenoles , Quimioprevención , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...