Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.801
Filtrar
1.
Phys Rev Lett ; 132(20): 203602, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38829095

RESUMEN

Fock states with a well-defined number of photons in an oscillator have shown a wide range of applications in quantum information science. Nonetheless, their usefulness has been marred by single and multiphoton losses due to unavoidable environment-induced dissipation. Though several dissipation engineering methods have been developed to counteract the leading single-photon-loss error, averting multiple-photon losses remains elusive. Here, we experimentally demonstrate a dissipation engineering method that autonomously stabilizes multiphoton Fock states against losses of multiple photons using a cascaded selective photon-addition operation in a superconducting quantum circuit. Through measuring the photon-number populations and Wigner tomography of the oscillator states, we observe a prolonged preservation of nonclassical Wigner negativities for the stabilized Fock states |N⟩ with N=1, 2, 3 for a duration of about 10 ms. Furthermore, the dissipation engineering method demonstrated here also facilitates the implementation of a nonunitary operation for resetting a binomially encoded logical qubit. These results highlight potential applications in error-correctable quantum information processing against multiple-photon-loss errors.

2.
Lancet ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38824941

RESUMEN

BACKGROUND: Anti-PD-1 therapy and chemotherapy is a recommended first-line treatment for recurrent or metastatic nasopharyngeal carcinoma, but the role of PD-1 blockade remains unknown in patients with locoregionally advanced nasopharyngeal carcinoma. We assessed the addition of sintilimab, a PD-1 inhibitor, to standard chemoradiotherapy in this patient population. METHODS: This multicentre, open-label, parallel-group, randomised, controlled, phase 3 trial was conducted at nine hospitals in China. Adults aged 18-65 years with newly diagnosed high-risk non-metastatic stage III-IVa locoregionally advanced nasopharyngeal carcinoma (excluding T3-4N0 and T3N1) were eligible. Patients were randomly assigned (1:1) using blocks of four to receive gemcitabine and cisplatin induction chemotherapy followed by concurrent cisplatin radiotherapy (standard therapy group) or standard therapy with 200 mg sintilimab intravenously once every 3 weeks for 12 cycles (comprising three induction, three concurrent, and six adjuvant cycles to radiotherapy; sintilimab group). The primary endpoint was event-free survival from randomisation to disease recurrence (locoregional or distant) or death from any cause in the intention-to-treat population. Secondary endpoints included adverse events. This trial is registered with ClinicalTrials.gov (NCT03700476) and is now completed; follow-up is ongoing. FINDINGS: Between Dec 21, 2018, and March 31, 2020, 425 patients were enrolled and randomly assigned to the sintilimab (n=210) or standard therapy groups (n=215). At median follow-up of 41·9 months (IQR 38·0-44·8; 389 alive at primary data cutoff [Feb 28, 2023] and 366 [94%] had at least 36 months of follow-up), event-free survival was higher in the sintilimab group compared with the standard therapy group (36-month rates 86% [95% CI 81-90] vs 76% [70-81]; stratified hazard ratio 0·59 [0·38-0·92]; p=0·019). Grade 3-4 adverse events occurred in 155 (74%) in the sintilimab group versus 140 (65%) in the standard therapy group, with the most common being stomatitis (68 [33%] vs 64 [30%]), leukopenia (54 [26%] vs 48 [22%]), and neutropenia (50 [24%] vs 46 [21%]). Two (1%) patients died in the sintilimab group (both considered to be immune-related) and one (<1%) in the standard therapy group. Grade 3-4 immune-related adverse events occurred in 20 (10%) patients in the sintilimab group. INTERPRETATION: Addition of sintilimab to chemoradiotherapy improved event-free survival, albeit with higher but manageable adverse events. Longer follow-up is necessary to determine whether this regimen can be considered as the standard of care for patients with high-risk locoregionally advanced nasopharyngeal carcinoma. FUNDING: National Natural Science Foundation of China, Key-Area Research and Development Program of Guangdong Province, Natural Science Foundation of Guangdong Province, Overseas Expertise Introduction Project for Discipline Innovation, Guangzhou Municipal Health Commission, and Cancer Innovative Research Program of Sun Yat-sen University Cancer Center. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.

4.
Mar Drugs ; 22(5)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38786596

RESUMEN

The escalation of jellyfish stings has drawn attention to severe skin reactions, underscoring the necessity for novel treatments. This investigation assesses the potential of hydroxybenzoic acid derivatives, specifically protocatechuic acid (PCA) and gentisic acid (DHB), for alleviating Nemopilema nomurai Nematocyst Venom (NnNV)-induced injuries. By employing an in vivo mouse model, the study delves into the therapeutic efficacy of these compounds. Through a combination of ELISA and Western blot analyses, histological examinations, and molecular assays, the study scrutinizes the inflammatory response, assesses skin damage and repair mechanisms, and investigates the compounds' ability to counteract venom effects. Our findings indicate that PCA and DHB significantly mitigate inflammation by modulating critical cytokines and pathways, altering collagen ratios through topical application, and enhancing VEGF and bFGF levels. Furthermore, both compounds demonstrate potential in neutralizing NnNV toxicity by inhibiting metalloproteinases and phospholipase-A2, showcasing the viability of small-molecule compounds in managing toxin-induced injuries.


Asunto(s)
Venenos de Cnidarios , Hidroxibenzoatos , Piel , Animales , Hidroxibenzoatos/farmacología , Ratones , Venenos de Cnidarios/farmacología , Piel/efectos de los fármacos , Piel/patología , Piel/metabolismo , Gentisatos/farmacología , Nematocisto/efectos de los fármacos , Modelos Animales de Enfermedad , Citocinas/metabolismo
5.
Int J Mol Sci ; 25(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38791246

RESUMEN

The myocyte enhancer factor 2 (MEF2) gene family play fundamental roles in the genetic programs that control cell differentiation, morphogenesis, proliferation, and survival in a wide range of cell types. More recently, these genes have also been implicated as drivers of carcinogenesis, by acting as oncogenes or tumor suppressors depending on the biological context. Nonetheless, the molecular programs they regulate and their roles in tumor development and progression remain incompletely understood. The present study evaluated whether the MEF2D transcription factor functions as a tumor suppressor in breast cancer. The knockout of the MEF2D gene in mouse mammary epithelial cells resulted in phenotypic changes characteristic of neoplastic transformation. These changes included enhanced cell proliferation, a loss of contact inhibition, and anchorage-independent growth in soft agar, as well as the capacity for tumor development in mice. Mechanistically, the knockout of MEF2D induced the epithelial-to-mesenchymal transition (EMT) and activated several oncogenic signaling pathways, including AKT, ERK, and Hippo-YAP. Correspondingly, a reduced expression of MEF2D was observed in human triple-negative breast cancer cell lines, and a low MEF2D expression in tissue samples was found to be correlated with a worse overall survival and relapse-free survival in breast cancer patients. MEF2D may, thus, be a putative tumor suppressor, acting through selective gene regulatory programs that have clinical and therapeutic significance.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Transición Epitelial-Mesenquimal , Factores de Transcripción MEF2 , Factores de Transcripción MEF2/metabolismo , Factores de Transcripción MEF2/genética , Animales , Humanos , Femenino , Ratones , Transición Epitelial-Mesenquimal/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Transducción de Señal
6.
J Colloid Interface Sci ; 669: 32-42, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38703580

RESUMEN

Simultaneously enhancing the durability and catalytic performance of metal-nitrogen-carbon (M-Nx-C) single-atom catalysts is critical to boost oxygen electrocatalysis for energy conversion and storage, yet it remains a grand challenge. Herein, through the combination of early and late metals, we proposed to enhance the stability and tune the catalytic activity of M-Nx-C SACs in oxygen electrocatalysis by their strong interaction with the M2'C-type MXene substrate. Our density functional theory (DFT) computations revealed that the strong interaction between "early-late" metal-metal bonds significantly improves thermal and electrochemical stability. Due to considerable charge transfer and shift of the d-band center, the electronic properties of these SACs can be extensively modified, thereby optimizing their adsorption strength with oxygenated intermediates and achieving eight promising bifunctional catalysts for ORR/OER with low overpotentials. More importantly, the constant-potential analysis demonstrated the excellent bifunctional activity of SACs supported on MXene substrate across a broad pH range, especially in strongly alkaline media with record-low overpotentials. Further machine learning analysis shows that the d-band center, the charge of the active site, and the work function of the formed heterojunctions are critical to revealing the ORR/OER activity origin. Our results underscore the vast potential of strong interactions between different metal species in enhancing the durability and catalytic performance of SACs.

7.
Proc Natl Acad Sci U S A ; 121(21): e2317495121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38753506

RESUMEN

Myogenic regeneration relies on the proliferation and differentiation of satellite cells. TECRL (trans-2,3-enoyl-CoA reductase like) is an endoplasmic reticulum protein only expressed in cardiac and skeletal muscle. However, its role in myogenesis remains unknown. We show that TECRL expression is increased in response to injury. Satellite cell-specific deletion of TECRL enhances muscle repair by increasing the expression of EGR2 through the activation of the ERK1/2 signaling pathway, which in turn promotes the expression of PAX7. We further show that TECRL deletion led to the upregulation of the histone acetyltransferase general control nonderepressible 5, which enhances the transcription of EGR2 through acetylation. Importantly, we showed that AAV9-mediated TECRL silencing improved muscle repair in mice. These findings shed light on myogenic regeneration and muscle repair.


Asunto(s)
Proteína 2 de la Respuesta de Crecimiento Precoz , Desarrollo de Músculos , Músculo Esquelético , Regeneración , Animales , Ratones , Músculo Esquelético/metabolismo , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Desarrollo de Músculos/genética , Regeneración/genética , Regulación hacia Arriba , Células Satélite del Músculo Esquelético/metabolismo , Factor de Transcripción PAX7/metabolismo , Factor de Transcripción PAX7/genética , Sistema de Señalización de MAP Quinasas , Ratones Noqueados , Diferenciación Celular
8.
Res Sq ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38765977

RESUMEN

PINK1 loss-of-function mutations and exposure to mitochondrial toxins are causative for Parkinson's disease (PD) and Parkinsonism, respectively. We demonstrate that pathological α-synuclein deposition, the hallmark pathology of idiopathic PD, induces mitochondrial dysfunction, and impairs mitophagy as evidenced by the accumulation of the PINK1 substrate pS65-Ubiquitin (pUb). We discovered MTK458, a brain penetrant small molecule that binds to PINK1 and stabilizes its active complex, resulting in increased rates of mitophagy. Treatment with MTK458 mediates clearance of accumulated pUb and α-synuclein pathology in α-synuclein pathology models in vitro and in vivo. Our findings from preclinical PD models suggest that pharmacological activation of PINK1 warrants further clinical evaluation as a therapeutic strategy for disease modification in PD.

9.
Int J Biol Macromol ; 269(Pt 2): 131952, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692541

RESUMEN

Thromboembolic diseases pose a serious risk to human health worldwide. Fucosylated chondroitin sulfate (FCS) is reported to have good anticoagulant activity with a low bleeding risk. Molecular weight plays a significant role in the anticoagulant activity of FCS, and FCS smaller than octasaccharide in size has no anticoagulant activity. Therefore, identifying the best candidate for developing novel anticoagulant FCS drugs is crucial. Herein, native FCS was isolated from sea cucumber Cucumaria frondosa (FCScf) and depolymerized into a series of lower molecular weights (FCScfs). A comprehensive assessment of the in vitro anticoagulant activity and in vivo bleeding risk of FCScfs with different molecule weights demonstrated that 10 kDa FCScf (FCScf-10 K) had a greater intrinsic anticoagulant activity than low molecular weight heparin (LMWH) without any bleeding risk. Using molecular modeling combined with experimental validation, we revealed that FCScf-10 K can specifically inhibit the formation of the Xase complex by binding the negatively charged sulfate group of FCScf-10 K to the positively charged side chain of arginine residues on the specific surface of factor IXa. Thus, these data demonstrate that the intermediate molecular weight FCScf-10 K is a promising candidate for the development of novel anticoagulant drugs.


Asunto(s)
Anticoagulantes , Sulfatos de Condroitina , Factor IXa , Peso Molecular , Animales , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacología , Sulfatos de Condroitina/aislamiento & purificación , Anticoagulantes/farmacología , Anticoagulantes/química , Anticoagulantes/aislamiento & purificación , Factor IXa/metabolismo , Factor IXa/antagonistas & inhibidores , Factor IXa/química , Cucumaria/química , Pepinos de Mar/química , Coagulación Sanguínea/efectos de los fármacos , Humanos , Modelos Moleculares
10.
Int J Biol Macromol ; 269(Pt 2): 132131, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38719017

RESUMEN

Chitosan oligosaccharide (COS) modification is a feasible way to develop novel green nematicides. This study involved the synthesis of various COS sulfonamide derivatives via hydroxylated protection and deprotection, which were then characterized using NMR, FTIR, MS, elemental analysis, XRD, and TG/DTG. In vitro experiments found that COS-alkyl sulfonamide derivatives (S6 and S11-S13) exhibited high mortality (>98 % at 1 mg/mL) against Meloidogyne incognita second-instar larvaes (J2s) among the derivatives. S6 can cause vacuole-like structures in the middle and tail regions of the nematode body and effectively inhibit egg hatching. In vivo tests have found that S6 has well control effects and low plant toxicity. Additionally, the structure-activity studies revealed that S6 with a high degree of substitution, a low molecular weight, and a sulfonyl bond on the amino group of the COS backbone exhibited increased nematicidal activity. The sulfonamide group is a potential active group for developing COS-based nematicides.


Asunto(s)
Antinematodos , Quitosano , Oligosacáridos , Sulfonamidas , Tylenchoidea , Quitosano/química , Quitosano/farmacología , Animales , Tylenchoidea/efectos de los fármacos , Antinematodos/farmacología , Antinematodos/química , Oligosacáridos/química , Oligosacáridos/farmacología , Sulfonamidas/química , Sulfonamidas/farmacología , Relación Estructura-Actividad , Larva/efectos de los fármacos
11.
Funct Integr Genomics ; 24(3): 81, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709433

RESUMEN

One of the primary concerns for the survival of the human species is the growing demand for food brought on by an increasing global population. New developments in genome-editing technology present promising opportunities for the growth of wholesome and prolific farm animals. Genome editing in large animals is used for a variety of purposes, including biotechnology to improve food production, animal health, and pest management, as well as the development of animal models for fundamental research and biomedicine. Genome editing entails modifying genetic material by removing, adding, or manipulating particular DNA sequences from a particular locus in a way that does not happen naturally. The three primary genome editors are CRISPR/Cas 9, TALENs, and ZFNs. Each of these enzymes is capable of precisely severing nuclear DNA at a predetermined location. One of the most effective inventions is base editing, which enables single base conversions without the requirement for a DNA double-strand break (DSB). As reliable methods for precise genome editing in studies involving animals, cytosine and adenine base editing are now well-established. Effective zygote editing with both cytosine and adenine base editors (ABE) has resulted in the production of animal models. Both base editors produced comparable outcomes for the precise editing of point mutations in somatic cells, advancing the field of gene therapy. This review focused on the principles, methods, recent developments, outstanding applications, the advantages and disadvantages of ZFNs, TALENs, and CRISPR/Cas9 base editors, and prime editing in diverse lab and farm animals. Additionally, we address the methodologies that can be used for gene regulation, base editing, and epigenetic alterations, as well as the significance of genome editing in animal models to better reflect real disease. We also look at methods designed to increase the effectiveness and precision of gene editing tools. Genome editing in large animals is used for a variety of purposes, including biotechnology to improve food production, animal health, and pest management, as well as the development of animal models for fundamental research and biomedicine. This review is an overview of the existing knowledge of the principles, methods, recent developments, outstanding applications, the advantages and disadvantages of zinc finger nucleases (ZFNs), transcription-activator-like endonucleases (TALENs), and clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR/Cas 9), base editors and prime editing in diverse lab and farm animals, which will offer better and healthier products for the entire human race.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Ganado , Edición Génica/métodos , Animales , Ganado/genética , Resistencia a la Enfermedad/genética
12.
J Agric Food Chem ; 72(20): 11652-11662, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38738910

RESUMEN

Pectin lyases (PNLs) can enhance juice clarity and flavor by degrading pectin in highly esterified fruits, but their inadequate acid resistance leads to rapid activity loss in juice. This study aimed to improve the acid resistance of Aspergillus niger PNL pelA through surface charge design. A modification platform was established by fusing pelA with a protein tag and expressing the fusion enzyme in Escherichia coli. Four single-point mutants were identified to increase the surface charge using computational tools. Moreover, the combined mutant M6 (S514D/S538E) exhibited 99.8% residual activity at pH 3.0. The M6 gene was then integrated into the A. niger genome using a multigene integration system to obtain the recombinant PNL AM6. Notably, AM6 improved the light transmittance of orange juice to 45.3%, which was 8.39 times higher than that of pelA. In conclusion, AM6 demonstrated the best-reported acid resistance, making it a promising candidate for industrial juice clarification.


Asunto(s)
Aspergillus niger , Jugos de Frutas y Vegetales , Proteínas Fúngicas , Polisacárido Liasas , Aspergillus niger/enzimología , Aspergillus niger/genética , Jugos de Frutas y Vegetales/análisis , Polisacárido Liasas/genética , Polisacárido Liasas/metabolismo , Polisacárido Liasas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Concentración de Iones de Hidrógeno , Manipulación de Alimentos , Ácidos/química , Ácidos/metabolismo , Ácidos/farmacología , Citrus sinensis/química , Pectinas/química , Pectinas/metabolismo , Estabilidad de Enzimas
13.
Front Nutr ; 11: 1296774, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38757129

RESUMEN

Background: Green tea intake has been reported to improve the clinical outcomes of patients with cardiovascular diseases or cancer. It may have a certain role in the development of venous thromboembolism (VTE) among cancer patients. The current study aimed to address this issue, which has been understudied. Methods: We carried out a retrospective study to explore the role of green tea intake in cancer patients. Patients with and without green tea intake were enrolled in a 1:1 ratio by using propensity scoring matching. The primary and secondary outcomes were VTE development and mortality 1 year after cancer diagnosis, respectively. Results: The cancer patients with green tea intake (n = 425) had less VTE development (10 [2.4%] vs. 23 [5.4%], p = 0.021), VTE-related death (7 [1.6%] vs. 18 [4.2%], p = 0.026), and fatal pulmonary embolism (PE) (3 [0.7%] vs. 12 [2.8%], p = 0.019), compared with those without green tea intake (n = 425). No intake of green tea was correlated with an increase in VTE development (multivariate hazard ratio (HR) 1.758 [1.476-2.040], p < 0.001) and VTE-related mortality (HR 1.618 [1.242-1.994], p = 0.001), compared with green tea intake. Patients with green tea intake less than 525 mL per day had increased VTE development (area under the curve (AUC) 0.888 [0.829-0.947], p < 0.001; HR1.737 [1.286-2.188], p = 0.001) and VTE-related mortality (AUC 0.887 [0.819-0.954], p < 0.001; HR 1.561 [1.232-1.890], p = 0.016) than those with green tea intake more than 525 mL per day. Green tea intake caused a decrease in platelet (p < 0.001) instead of D-dimer (p = 0.297). The all-cause mortality rates were similar between green tea (39 [9.2%]) and non-green tea (48 [11.3%]) intake groups (p = 0.308), whereas the VTE-related mortality rate in the green tea intake group (7 [1.6%]) was lower than that of the non-green tea intake group (18 [4.2%]) (p = 0.026). The incidences of adverse events were similar between the green tea and non-green tea intake groups. Conclusion: In conclusion, the current study suggests that green tea intake reduces VTE development and VTE-related mortality in cancer patients, most likely through antiplatelet mechanisms. Drinking green tea provides the efficacy of thromboprophylaxis for cancer patients.

14.
Biomed Rep ; 20(6): 101, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38765854

RESUMEN

Phototherapy is the most commonly used treatment for neonatal hyperbilirubinemia (NH). Gut microbiota is involved in bilirubin metabolism; however, it is uncertain whether this is affected by phototherapy. The present study included 43 newborns with hyperbilirubinemia and collected fecal samples for high-throughput sequencing before and after phototherapy. Selection α diversity analysis was used to determine the differences in diversity and abundance between the two groups, whereas similarity was determined using ß diversity analysis. Linear discriminant analysis effect size analysis was used to screen for markedly different bacteria. The structure of the gut microbiota in newborns with hyperbilirubinemia changed after phototherapy, with a significant decrease in abundance and diversity. The changes in the key bacterial species were characterized by an increase in the abundance of Streptococcus salivarius and a decrease in the abundance of Escherichia, Klebsiella pneumoniae, Rothia mucilaginosa and Streptococcus oralis. These changes mainly manifested as an increase in beneficial bacteria and a decrease in opportunistic bacteria, which may not be related to the side effects of phototherapy. These results can provide theoretical assistance for microbiological research on the later stages of NH.

15.
Biochem Biophys Res Commun ; 719: 150084, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38733742

RESUMEN

INTRODUCTION: Colorectal cancer (CRC) is a prevalent digestive malignancy with significant global mortality and morbidity rates. Improving diagnostic capabilities for CRC and investigating novel therapeutic approaches are pressing clinical imperatives. Additionally, carcinoembryonic antigen (CEA) has emerged as a highly promising candidate for both colorectal tumor imaging and treatment. METHODS: A novel active CEA-targeting nanoparticle, CEA(Ab)-MSNs-ICG-Pt, was designed and synthesized, which served as a tumor-specific fluorescence agent to help in CRC near-infrared (NIR) fluorescence imaging. In cell studies, CEA(Ab)-MSNs-ICG-Pt exhibited specific targeting to RKO cells through specific antibody-antigen binding of CEA, resulting in distribution both within and around these cells. The tumor-targeting-specific imaging capabilities of the nanoparticle were determined through in vivo fluorescence imaging experiments. Furthermore, the efficacy of the nanoparticle in delivering chemotherapeutics and its killing effect were evaluated both in vitro and in vivo. RESULTS: The CEA(Ab)-MSNs-ICG-Pt nanoparticle, designed as a novel targeting agent for carcinoembryonic antigen (CEA), exhibited dual functionality as a targeting fluorescent agent. This CEA-targeting nanoparticle showed exceptional efficacy in eradicating CRC cells in comparison to individual treatment modalities. Furthermore, it exhibits exceptional biosafety and biocompatibility properties. CEA(Ab)-MSNs-ICG-Pt exhibits significant promise due to its ability to selectively target tumors through NIR fluorescence imaging and effectively eradicate CRC cells with minimal adverse effects in both laboratory and in vivo environments. CONCLUSION: The favorable characteristics of CEA(Ab)-MSNs-ICG-Pt offer opportunities for its application in chemotherapeutic interventions, tumor-specific NIR fluorescence imaging, and fluorescence-guided surgical procedures.

16.
Cell Death Dis ; 15(5): 327, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729953

RESUMEN

Programmed cell death (PCD) is a basic process of life that is closely related to the growth, development, aging and disease of organisms and is one of the hotspots of life science research today. PCD is a kind of genetic control, autonomous and orderly important cell death that involves the activation, expression, and regulation of a series of genes. In recent years, with the deepening of research in this field, new mechanisms of multiple PCD pathways have been revealed. This article reviews and summarizes the multiple PCD pathways that have been discovered, analyses and compares the morphological characteristics and biomarkers of different types of PCD, and briefly discusses the role of various types of PCD in the diagnosis and treatment of different diseases, especially malignant tumors.


Asunto(s)
Apoptosis , Humanos , Apoptosis/genética , Animales , Neoplasias/patología , Neoplasias/genética , Neoplasias/metabolismo , Transducción de Señal
17.
Nat Commun ; 15(1): 4086, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744858

RESUMEN

Sustainable battery recycling is essential for achieving resource conservation and alleviating environmental issues. Many open/closed-loop strategies for critical metal recycling or direct recovery aim at a single component, and the reuse of mixed cathode materials is a significant challenge. To address this barrier, here we propose an upcycling strategy for spent LiFePO4 and Mn-rich cathodes by structural design and transition metal replacement, for which uses a green deep eutectic solvent to regenerate a high-voltage polyanionic cathode material. This process ensures the complete recycling of all the elements in mixed cathodes and the deep eutectic solvent can be reused. The regenerated LiFe0.5Mn0.5PO4 has an increased mean voltage (3.68 V versus Li/Li+) and energy density (559 Wh kg-1) compared with a commercial LiFePO4 (3.38 V and 524 Wh kg-1). The proposed upcycling strategy can expand at a gram-grade scale and was also applicable for LiFe0.5Mn0.5PO4 recovery, thus achieving a closed-loop recycling between the mixed spent cathodes and the next generation cathode materials. Techno-economic analysis shows that this strategy has potentially high environmental and economic benefits, while providing a sustainable approach for the value-added utilization of waste battery materials.

18.
bioRxiv ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38798606

RESUMEN

The functional connectome changes with aging. We systematically evaluated aging related alterations in the functional connectome using a whole-brain connectome network analysis in 39,675 participants in UK Biobank project. We used adaptive dense network discovery tools to identify networks directly associated with aging from resting-state fMRI data. We replicated our findings in 499 participants from the Lifespan Human Connectome Project in Aging study. The results consistently revealed two motor-related subnetworks (both permutation test p-values <0.001) that showed a decline in resting-state functional connectivity (rsFC) with increasing age. The first network primarily comprises sensorimotor and dorsal/ventral attention regions from precentral gyrus, postcentral gyrus, superior temporal gyrus, and insular gyrus, while the second network is exclusively composed of basal ganglia regions, namely the caudate, putamen, and globus pallidus. Path analysis indicates that white matter fractional anisotropy mediates 19.6% (p<0.001, 95% CI [7.6% 36.0%]) and 11.5% (p<0.001, 95% CI [6.3% 17.0%]) of the age-related decrease in both networks, respectively. The total volume of white matter hyperintensity mediates 32.1% (p<0.001, 95% CI [16.8% 53.0%]) of the aging-related effect on rsFC in the first subnetwork.

19.
Eur J Pharmacol ; 975: 176659, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38762158

RESUMEN

Obstructive sleep apnea syndrome (OSAS), characterized by repeated narrow or collapse of the upper airway during sleep, resulting in periodic reductions or cessations in ventilation, consequent hypoxia, hypercapnia, increased sympathetic activity and sleep fragmentation, places a serious burden on society and health care. Intermittent hypoxia (IH), which cause central nervous system (CNS) inflammation, and ultimately lead to neuropathy, is thought to be a crucial contributor to cognitive impairment in OSAS. Wnt signaling pathway exerts an important role in the regulation of CNS disorders. Particularly, it may be involved in the regulation of neuroinflammation and cognitive dysfunction. However, its underlying mechanism remains poorly understood. Accumulating evidence demonstrated that Wnt signaling pathway may inhibited in a variety of neurological disorders. Recently studies revealed that SUMOylation was participated in the regulation of neuroinflammation. Members of Wnt/ß-catenin pathway may be targets of SUMOylation. In vitro and in vivo molecular biology experiments explored the regulatory mechanism of SUMOylation on Wnt/ß-catenin in IH-induced neuroinflammation and neuronal injury, which demonstrated that IH induced the SUMOylation of ß-catenin, microglia mediated inflammation and neuronal damage. Moreover, SENP1 regulated the de-SUMOylation of ß-catenin, triggered Wnt/ß-catenin pathway, and alleviated neuroinflammation and neuronal injury, thus improving IH-related mice cognitive dysfunction.

20.
Analyst ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712505

RESUMEN

Specific detection of glycoproteins such as transferrin (TRF) related to neurological diseases, hepatoma and other diseases always plays an important role in the field of disease diagnosis. We designed an antibody-free immunoassay sensing method based on molecularly imprinted polymers (MIPs) formed by the polymerization of multiple functional monomers for the sensitive and selective detection of TRF in human serum. In the sandwich surface-enhanced Raman spectroscopy (SERS) sensor, the TRF-oriented magnetic MIP nanoparticles (Fe3O4@SiO2-MIPs) served as capture units to specifically recognize TRF and 4-mercaptophenylboronic acid-functionalized gold nanorods (MPBA-Au NRs) served as SERS probes to label the targets. In order to achieve stronger interaction between the recognition cavities of the prepared MIPs and the different amino acid fragments that make up TRF, Fe3O4@SiO2-MIPs were obtained through polycondensation reactions between more silylating reagents, enhancing the specific recognition of the entire TRF protein and achieving high IF. This sensing method exhibited a good linear response to TRF within the TRF concentration range of 0.01 ng mL-1 to 1 mg mL-1 (R2 = 0.9974), and the LOD was 0.00407 ng mL-1 (S/N = 3). The good stability, reproducibility and specificity of the resulting MIP based SERS sensor were demonstrated. The determination of TRF in human serum confirmed the feasibility of the method in practical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA