Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Front Pharmacol ; 15: 1466336, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39351096

RESUMEN

Introduction: Depression is a common psychological disorder, accompanied by a disturbance of the gut microbiota and its metabolites. Recently, microbiota-derived tryptophan metabolism and AMPK/mTOR pathway were found to be strongly linked to the development of depression. Shugan Hewei Decoction (SHD) is a classical anti-depression traditional Chinese medicine formula. Although, we have shown that SHD exerted antidepressant effects via cecal microbiota and cecum NLRP3 inflammasome, the specific mechanism of SHD on metabolism driven by gut microbiota is unknown. In this study, we focus on the tryptophan metabolism and AMPK/mTOR pathway to elucidate the multifaceted mechanisms of SHD. Methods: Male rats were established to the chronic unpredictable stress (CUS)/social isolation for 6 weeks, and SHD-L (7.34 g/kg/d), SHD-H (14.68 g/kg/d), Fructooligosaccharide (FOS) (3.15 g/kg/d) were given by intragastric administration once daily during the last 2 weeks. Behavioral experiments were carried out to evaluate the model. The colonic content was taken out for shotgun metagenomic sequencing combined with the untargeted metabolomics, the targeted tryptophan metabolomics. ELISA was used to detect the levels of zonula occludens 1 (ZO-1), Occludin in colon, as well as lipopolysaccharide (LPS), diamine oxidase (DAO), D-lactate (DLA) in serum. The expressions of mRNA and proteins of adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway of autophagy were examined using RT-qPCR and Western blot in colon. Results: SHD modulated gut microbiota function and biological pathways, which were related to tryptophan metabolism. In addition, SHD could regulate microbiota-derived tryptophan production (such as reduction of 3-HK, 3-HAA etc., increment of ILA, IAA etc.), which metabolites belong to kynurenine (KYN) and indole derivatives. Further, SHD reduced intestinal permeability and enhanced the intestinal barrier function. Moreover, SHD could upregulate the levels of AMPK, microtubule associated protein light chain 3 (LC3), autophagy related protein 5 (ATG5) and Beclin1, downregulate the levels of mTOR, p62, promoted autophagy in colon. Spearman's analysis illustrated the close correlation between tryptophan metabolites and intestinal barrier, AMPK/mTOR pathway. Conclusion: SHD may exert antidepressant-like effects by regulating microbiota-derived tryptophan metabolism, and triggering the AMPK/mTOR pathway of autophagy, enhancing the intestinal barrier function.

2.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273376

RESUMEN

The interaction between environmental stressors, such as cold exposure, and immune function significantly impacts human health. Research on effective therapeutic strategies to combat cold-induced immunosuppression is limited, despite its importance. In this study, we aim to investigate whether traditional herbal medicine can counteract cold-induced immunosuppression. We previously demonstrated that cold exposure elevated immunoglobulin G (IgG) levels in mice, similar to the effects of intravenous immunoglobulin (IVIg) treatments. This cold-induced rise in circulating IgG was mediated by the renin-angiotensin-aldosterone system and linked to vascular constriction. In our mouse model, the cold-exposed groups (4 °C) showed significantly elevated plasma IgG levels and reduced bacterial clearance compared with the control groups maintained at room temperature (25 °C), both indicative of immunosuppression. Using this model, with 234 mice divided into groups of 6, we investigated the potential of tanshinone IIA, an active compound in Salvia miltiorrhiza ethanolic root extract (SMERE), in alleviating cold-induced immunosuppression. Tanshinone IIA and SMERE treatments effectively normalized elevated plasma IgG levels and significantly improved bacterial clearance impaired by cold exposure compared with control groups injected with a vehicle control, dimethyl sulfoxide. Notably, bacterial clearance, which was impaired by cold exposure, showed an approximately 50% improvement following treatment, restoring immune function to levels comparable to those observed under normal temperature conditions (25 °C, p < 0.05). These findings highlight the therapeutic potential of traditional herbal medicine in counteracting cold-induced immune dysregulation, offering valuable insights for future strategies aimed at modulating immune function in cold environments. Further research could focus on isolating tanshinone IIA and compounds present in SMERE to evaluate their specific roles in mitigating cold-induced immunosuppression.


Asunto(s)
Frío , Inmunoglobulina G , Extractos Vegetales , Raíces de Plantas , Salvia miltiorrhiza , Animales , Salvia miltiorrhiza/química , Ratones , Extractos Vegetales/farmacología , Extractos Vegetales/química , Inmunoglobulina G/sangre , Raíces de Plantas/química , Masculino , Abietanos/farmacología , Terapia de Inmunosupresión/métodos , Tolerancia Inmunológica/efectos de los fármacos
3.
Sci Total Environ ; 953: 176251, 2024 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-39277004

RESUMEN

High coastal nutrient loading can cause changes in seagrass chemistry traits that may lead to variability in seagrass litter decomposition processes. Such changes in decomposition have the potential to alter the carbon (C) sequestration capacity within seagrass meadows ('blue carbon'). However, the external and internal factors that drive the variability in decomposition rates of the different organic matter (OM) types of seagrass are poorly understood, especially recalcitrant OM (i.e. cellulose-associated OM and lignin-associated OM), thereby limiting our ability to evaluate the C sequestration potential. It was conducted a laboratory incubation to compare differences in the decomposition of Halophila beccarii litter collected from seagrass meadows with contrasting nutrient loading histories. The exponential decay constants of seagrass litter mass, cellulose-associated OM and lignin-associated OM were 0.009-0.032, 0.014-0.054 and 0.009-0.033 d-1, respectively. The seagrass litter collected from meadows with high nutrient loading exhibited greater losses of mass (25.0-41.2 %), cellulose-associated OM (2.8-18.5 %) and lignin-associated OM (9.6-31.2 %) than litter from relatively low nutrient loading meadows. The initial and temporal changes of the litter nitrogen (N) and phosphorus (P) concentrations, stoichiometric ratios of lignin/N, C/N, and C/P, and cellulose-associated OM content, were strongly correlated with the losses of litter mass and different types of OM. Further, temporal changes of litter C and OM types, particularly the OM and labile OM concentrations, were identified as the main driving factors for the loss of litter mass and loss of different OM types. These results indicated that nutrient-loaded seagrass litter, characterized by elevated nutrient levels and diminished amounts of recalcitrant OM, exhibits an accelerated decay rate for the recalcitrant OM. These differences in litter quality would lead to a reduced contribution of seagrass litter to long-term C stocks in eutrophic meadows, thereby weakening the stability of C sequestration. Considering the expected changes in seagrass litter chemistry traits and decay rates due to long-term nutrient loading, this study provides useful information for improving C sequestration capabilities through effective pollution management.


Asunto(s)
Secuestro de Carbono , Nutrientes/análisis , Hydrocharitaceae , Nitrógeno/análisis , Lignina , Fósforo/análisis , Carbono , Biodegradación Ambiental
4.
Sci Total Environ ; 951: 175702, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39179040

RESUMEN

Costal eutrophication leads to increased sulfide levels in sediments, which has been identified as a major cause of the global decline in seagrass beds. The seagrass Thalassia hemprichii, a dominant tropical species in the Indo-Pacific, is facing a potential threat from sulfide, which can be easily reduced from sulfate in porewater under the influence of global climate change and eutrophication. However, its metabolic response and tolerance mechanisms to high sulfide remain unclear. Thus, the current study investigated the physiological responses and programmed metabolic networks of T. hemprichii through a three-week mesocosm experiment, integrating physiology, stable isotope, widely targeted metabolomics, transcriptomics, and microbial diversity assessments. High sulfide reduced the sediment microbial diversity, while increased sediment sulfate reduced bacterial abundance and δ34S. The exposure to sulfide enhanced root δ34S while decreased leaf δ34S in T. hemprichii. High sulfide was shown to inhibit photosynthesis via damaging PSII, which further reduced ATP production. In response, abundant up-regulated differentially expressed genes in energy metabolism, especially in oxidative phosphorylation, were activated to compensate high energy requirement. High sulfide also promoted autophagy by overexpressing the genes related to phagocytosis and phagolysosome. Meanwhile, metabolomic profiling revealed that the contents of many primary metabolites, such as carbohydrates and amino acids, were reduced in both leaves and roots, likely to provide more energy and synthesize stress-responsive secondary metabolites. Genes related to nitrate reduction and transportation were up-regulated to promote N uptake for sulfide detoxification. High sulfide levels specifically enhanced thiamine in roots, while increased jasmonic acid and flavonoid levels in leaves. The distinct differences in metabolism between roots and leaves might be related to sulfide levels and the growth-defense trade-off. Collectively, our work highlights the specific mechanisms underlying the response and tolerance of T. hemprichii to high sulfide, providing new insights into seagrass strategies for resisting sulfide.


Asunto(s)
Hydrocharitaceae , Redes y Vías Metabólicas , Metaboloma , Sulfuros , Transcriptoma , Hydrocharitaceae/metabolismo , Hydrocharitaceae/genética , Contaminantes Químicos del Agua , Eutrofización
5.
Anal Chem ; 96(33): 13719-13726, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39120618

RESUMEN

The rapid and sensitive quantification of low-abundance protein markers holds immense significance in early disease diagnosis and treatment. Single-molecule fluorescence imaging exhibits very high detection sensitivity and thus has great application potential in this area. The single-molecule signal, however, is often susceptible to interference from background noise due to its inherently weak intensity. A variety of signal amplification techniques based on cascading reactions have been developed to improve the signal-to-noise ratio of single-molecule imaging. Nevertheless, the operation of these methods is typically complicated and time-consuming, which limits the clinical application. Herein, we introduce an enzyme-free, photonic-crystal-based single-molecule (PC-SM) biochip for cost-effective, time-efficient, and ultrasensitive detection of disease markers. The PC-SM biochip can enhance the signal-to-noise ratio of single molecules by nearly 3-fold compared with unamplified samples, through coupling of the single-molecule photon energy with the optical band gap of the photonic crystal. We used the PC-SM biochip to detect the low-abundance leukemia inhibitory factor in the blood of pancreatic cancer patients and healthy people and achieved a detection limit of 2.0 pg/L and an AUC of 0.9067. The method exhibits exceptional sensitivity and specificity, showing great application potential in various clinical settings.


Asunto(s)
Biomarcadores de Tumor , Fotones , Imagen Individual de Molécula , Humanos , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/análisis , Imagen Individual de Molécula/métodos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/sangre , Límite de Detección , Imagen Óptica
6.
ACS Nano ; 18(32): 20934-20956, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39092833

RESUMEN

The electrochemical reduction of nitrogen to produce ammonia is pivotal in modern society due to its environmental friendliness and the substantial influence that ammonia has on food, chemicals, and energy. However, the current electrochemical nitrogen reduction reaction (NRR) mechanism is still imperfect, which seriously impedes the development of NRR. In situ characterization techniques offer insight into the alterations taking place at the electrode/electrolyte interface throughout the NRR process, thereby helping us to explore the NRR mechanism in-depth and ultimately promote the development of efficient catalytic systems for NRR. Herein, we introduce the popular theories and mechanisms of the electrochemical NRR and provide an extensive overview on the application of various in situ characterization approaches for on-site detection of reaction intermediates and catalyst transformations during electrocatalytic NRR processes, including different optical techniques, X-ray-based techniques, electron microscopy, and scanning probe microscopy. Finally, some major challenges and future directions of these in situ techniques are proposed.

7.
J Environ Manage ; 365: 121617, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38968896

RESUMEN

Suspended particulate matter (SPM) plays a crucial role in assessing the health status of coastal ecosystems. Satellite remote sensing offers an effective approach to investigate the variations and distribution patterns of SPM, with the performance of various satellite retrieval models exhibiting significant spatial heterogeneity. However, there is still limited information on precise remote sensing retrieval algorithms specifically designed for estimating SPM in tropical areas, hindering our ability to monitor the health status of valuable tropical ecological resources. A relatively accurate empirical algorithm (root mean square error = 2.241 mg L-1, mean absolute percentage error = 42.527%) was first developed for the coastal SPM of Hainan Island based on MODIS images and over a decade of field SPM data, which conducted comprehensive comparisons among empirical models, semi-analytical models, and machine learning models. Long-term monitoring from 2003 to 2022 revealed that the average SPM concentration along the coastal wetlands of Hainan Island was 6.848 mg L-1, which displayed a decreasing trend due to government environmental protection regulations (average rate of change of -0.009 mg L-1/year). The seasonal variations in coastal SPM were primarily influenced by sea surface temperature (SST). Spatially, the concentrations of SPM along the southwest coast of Hainan Island were higher in comparison to other waters, which was attributable to sediment types and ocean currents. Further, anthropogenic pressure (e.g., agricultural waste input, vegetation cover) was the main influence on the long-term changes of coastal SPM in Hainan Island, particularly evident in typical tropical ecosystems affected by aquaculture, coastal engineering, and changes in coastal green vegetation. Compared to other typical ecosystems around the globe, the overall health status of SPM along the coast wetlands of Hainan is considered satisfactory. These findings not only establish a robust remote sensing model for long-term SPM monitoring along the coast of Hainan Island, but also provide comprehensive insights into SPM dynamics, thereby contributing to the formulation of future coastal zone management policies.


Asunto(s)
Monitoreo del Ambiente , Islas , Material Particulado , Material Particulado/análisis , Tecnología de Sensores Remotos , Ecosistema , Imágenes Satelitales , China
8.
Biosensors (Basel) ; 14(7)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39056590

RESUMEN

Stimulated emission depletion (STED) microscopy, as a popular super-resolution imaging technique, has been widely used in bio-structure analysis and resolving the dynamics of biological processes beyond the diffraction limit. The performance of STED critically depends on the optical properties of the fluorescent probes. Ideally, the probe should process high brightness and good photostability, and exhibit a sensitive response to the depletion beam. Organic dyes and fluorescent proteins, as the most widely used STED probes, suffer from low brightness and exhibit rapid photobleaching under a high excitation power. Recently, luminescent nanoparticles (NPs) have emerged as promising fluorescent probes in biological imaging due to their high brightness and good photostability. STED imaging using various kinds of NPs, including quantum dots, polymer dots, carbon dots, aggregation-induced emission dots, etc., has been demonstrated. This review will comprehensively review recent advances in fluorescent NP-based STED probes, discuss their advantages and pitfalls, and outline the directions for future development.


Asunto(s)
Colorantes Fluorescentes , Nanopartículas , Puntos Cuánticos , Colorantes Fluorescentes/química , Microscopía Fluorescente , Humanos
9.
Sci Total Environ ; 946: 174396, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38950634

RESUMEN

Salt marsh has an important 'purification' role in coastal ecosystems by removing excess nitrogen that could otherwise harm aquatic life and reduce water quality. Recent studies suggest that salt marsh root exudates might be the 'control centre' for nitrogen transformation, but empirical evidence is lacking. Here we sought to estimate the direction and magnitude of nitrogen purification by salt marsh root exudates and gain a mechanistic understanding of the biogeochemical transformation pathway(s). To achieve this, we used a laboratory incubation to quantify both the root exudates and soil nitrogen purification rates, in addition to the enzyme activities and functional genes under Phragmites australis populations with different nitrogen forms addition (NO3-, NH4+ and urea). We found that NO3- and urea addition significantly stimulate P. australis root exudation of total acids, amino acids, total sugars and total organic carbon, while NH4+ addition only significantly increased total acids, amino acids and total phenol exudation. High total sugars, amino acids and total organic carbon concentrations enlarged nitrogen purification potential by stimulating the nitrogen purifying bacterial activities (including enzyme activities and related genes expression). Potential denitrification rates were not significantly elevated under NH4+ addition in comparison to NO3- and urea addition, which should be ascribed to total phenol self-toxicity and selective inhibition. Further, urea addition stimulated urease and protease activities with providing more NH4+ and NO2- substrates for elevated anaerobic ammonium oxidation rates among the nitrogen addition treatments. Overall, this study revealed that exogenous nitrogen could increase the nitrogen purification-associated bacterial activity through accelerating the root exudate release, which could stimulate the activity of nitrogen transformation, and then improve the nitrogen removal capacity in salt marsh.


Asunto(s)
Nitrógeno , Raíces de Plantas , Suelo , Humedales , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Suelo/química , Poaceae , Exudados de Plantas , Desnitrificación
10.
Environ Sci Technol ; 58(28): 12653-12663, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38916402

RESUMEN

Geogenic arsenic (As) in groundwater is widespread, affecting drinking water and irrigation supplies globally, with food security and safety concerns on the rise. Here, we present push-pull tests that demonstrate field-scale As immobilization through the injection of small amounts of ferrous iron (Fe) and nitrate, two readily available agricultural fertilizers. Such injections into an aquifer with As-rich (200 ± 52 µg/L) reducing groundwater led to the formation of a regenerable As reactive filter in situ, producing 15 m3 of groundwater meeting the irrigation water quality standard of 50 µg/L. Concurrently, sediment magnetic properties were markedly enhanced around the well screen, pointing to neo-formed magnetite-like minerals. A reactive transport modeling approach was used to quantitatively evaluate the experimental observations and assess potential strategies for larger-scale implementation. The modeling results demonstrate that As removal was primarily achieved by adsorption onto neo-formed minerals and that an increased adsorption site density coincides with the finer-grained textures of the target aquifer. Up-scaled model simulations with 80-fold more Fe-nitrate reactants suggest that enough As-safe water can be produced to irrigate 1000 m2 of arid land for one season of water-intense rice cultivation at a low cost without causing undue contamination in surface soils that threatens agricultural sustainability.


Asunto(s)
Riego Agrícola , Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Agua Subterránea/química , Contaminantes Químicos del Agua/química , Hierro/química , Nitratos
11.
J Pharm Biomed Anal ; 247: 116262, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38820835

RESUMEN

Poria cocos (Schw.) Wolf (PCW) are the dried sclerotia of Poaceae fungus Poria cocos that contain many biological activity ingredients such as polysaccharides and triterpenoids. The carbohydrates from Poria cocos have been proven to possess anti-inflammatory and antioxidant effects. This study aimed to investigate the impact and mechanism of Poria cocos oligosaccharides (PCO) protecting mice against acute lung injury (ALI). We examined the histopathological analysis of lung injury, inflammatory, and edema levels to evaluate the benefits of PCO during ALI. As a result, PCO improved the lipopolysaccharide (LPS) induced lung injury and decreased the inflammatory cytokines of lung tissue. Simultaneously, PCO alleviated lung edema by regulating the expression of aquaporin5 (AQP5) and epithelial Na+ channel protein (ENaC-α). Additionally, untargeted metabolomics was performed on the plasma of ALI mice via HUPLC-Triple-TOF/MS. The results indicated that linoleic acid, linolenic acid, arachidonic acid, carnosine, glutamic acid, and 1-methylhistamine were the biomarkers in ALI mice. Besides, metabolic pathway analysis suggested PCO affected the histidine and fatty acid metabolism, which were closely associated with inflammation and oxidative reaction of the host. Consequently, the effects of PCO inhibiting inflammation and edema might relate to the reducing pro-inflammatory mediators and the reverse of abnormal metabolic pathways.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Metabolómica , Oligosacáridos , Wolfiporia , Animales , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/tratamiento farmacológico , Ratones , Metabolómica/métodos , Lipopolisacáridos/toxicidad , Oligosacáridos/farmacología , Masculino , Wolfiporia/química , Antiinflamatorios/farmacología , Biomarcadores/sangre , Modelos Animales de Enfermedad , Citocinas/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Antioxidantes/farmacología
12.
Sci Total Environ ; 937: 173523, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38797423

RESUMEN

Seagrass meadows are globally recognized as critical natural carbon sinks, commonly known as 'blue carbon'. However, seagrass decline attributed to escalating human activities and climate change, significantly influences their carbon sequestration capacity. A key aspect in comprehending the impact of seagrass decline on carbon sequestration is understanding how degradation affects the stored blue carbon, primarily consisting of sediment organic carbon (SOC). While it is widely acknowledged that seagrass decline affects the input of organic carbon, little is known about its impact on SOC pool stability. To address this knowledge, we examined variations in total SOC and recalcitrant SOC (RSOC) at a depth of 15 cm in nine seagrass meadows located on the coast of Southern China. Our findings revealed that the ratio of RSOC to SOC (RSOC/SOC) ranged from 27 % to 91 % in the seagrass meadows, and the RSOC/SOC increased slightly with depth. Comparing different seagrass species, we observed that SOC and RSOC stocks were 1.94 and 3.19-fold higher under Halophila beccarii and Halophila ovalis meadows compared to Thalassia hemprichii and Enhalus acoroides meadows. Redundancy and correlation analyses indicated that SOC and RSOC content and stock, as well as the RSOC/SOC ratio, decreased with declining seagrass shoot density, biomass, and coverage. This implies that the loss of seagrass, caused by human activities and climate change, results in a reduction in carbon sequestration stability. Further, the RSOC decreased by 15 %, 29 %, and 40 % under unvegetated areas compared to adjacent Halophila spp., T. hemprichii and E. acoroides meadows, respectively. Given the anticipated acceleration of seagrass decline due to climate change and increasing coastal development, our study provides timely information for developing coastal carbon protection strategies. These strategies should focus on preserving seagrass and restoring damaged seagrass meadows, to maximize their carbon sequestration capacity.


Asunto(s)
Secuestro de Carbono , Carbono , Cambio Climático , Sedimentos Geológicos , Sedimentos Geológicos/química , China , Carbono/análisis , Monitoreo del Ambiente , Hydrocharitaceae , Alismatales
13.
Naunyn Schmiedebergs Arch Pharmacol ; 397(8): 5819-5830, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38321213

RESUMEN

Interstitial cystitis (IC) is a chronic bladder inflammation. Inhibition of prostaglandin G/H synthase 2 (PTGS2) is the most common method for controlling inflammation-related diseases. This study aimed to analyze the effects of hispidulin on the PTGS2 and NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammation in experimental IC models. A binding activity between hispidulin and PTGS2 was measured using molecular docking. Human urothelial cells (SV-HUC-1) were stimulated by 2 ng/mL of interleukin (IL)-1ß for 24 h and cultured in a medium with different concentrations of hispidulin (2.5, 5, 10, 20 µM) for 24 h to observe the expressions of PTGS2 and NLRP3 protein. Cells overexpressing PTGS2 were established by PTGS2 cDNA transfection. In the IL-1ß-treated cells, the NLRP3 inflammasome was measured after 20 µM hispidulin treatment. In rats, animals were performed with three injections of 40 mg/kg cyclophosphamide (CYP) and orally treated with 50 mg/kg/day hispidulin or ibuprofen for 3 days. The bladder pain was measured using Von Frey filaments, and the bladder pathology was observed using hematoxylin and eosin (H&E) staining. The expressions of PTGS2 and NLRP3 inflammasome were also observed in the bladder tissues. A good binding activity was found between hispidulin and PTGS2 (score = - 8.9 kcal/mol). The levels of PTGS2 and NLRP3 inflammasome were decreased with the hispidulin dose increase in the IL-1ß-treated cells (p < 0.05). Cells overexpressing PTGS2 weakened the protective effects of hispidulin in the IL-1ß-treated cells (p < 0.01). In the CYP-treated rats, hispidulin treatment improved the bladder pain through decreasing the nociceptive score (p < 0.01) and suppressed the bladder inflammation through suppressing the expressions of PTGS2 and NLRP3 inflammasome in bladder tissues (p < 0.01). Additionally, the results of ibuprofen treatment were similar to the effects of hispidulin in the CYP-treated rats. This study demonstrates that hispidulin may be a new alternative drug for the IC treatment that binds PTGS2 to perform its functions.


Asunto(s)
Ciclooxigenasa 2 , Ciclofosfamida , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Ciclooxigenasa 2/metabolismo , Humanos , Inflamasomas/metabolismo , Ciclofosfamida/toxicidad , Ratas , Ratas Sprague-Dawley , Línea Celular , Interleucina-1beta/metabolismo , Femenino , Cistitis/inducido químicamente , Cistitis/metabolismo , Cistitis/tratamiento farmacológico , Cistitis/patología , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/metabolismo , Vejiga Urinaria/patología , Simulación del Acoplamiento Molecular , Masculino , Cistitis Intersticial/tratamiento farmacológico , Cistitis Intersticial/metabolismo , Cistitis Intersticial/patología , Cistitis Intersticial/inducido químicamente , Flavonas
14.
15.
Sci Total Environ ; 917: 170489, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38301785

RESUMEN

Estuaries receive substantial amounts of terrestrial dissolved organic nitrogen (tDON), which will be transported from the freshwater to the oceanic terminus through vigorous exchange processes. However, the intricate migration and transformation dynamics of tDON during this transportation, particularly at a molecular level, remain constrained. To address this knowledge gap, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used for the analysis of DON molecular composition in the Pearl River Estuary (PRE), a river-dominated estuarine system influenced by intensified anthropogenic activities in southern China. The results showed a pronounced spatial-temporal variation in DON concentration in the study area. At the molecular level, tDON exhibited reduced unsaturation and aromaticity, coupled with an elevated abundance of DON compounds containing one­nitrogen atom (1 N-DON, 53.17 %) and compounds containing carbon, hydrogen, oxygen, nitrogen, and sulfur (CHONS) (27.46 %). It was evident that lignin was depleted while more oxygenated tannin compounds were generated in the freshwater-seawater mixing zone. This transformation is attributed to heightened biological activities, likely influenced by the priming effect of terrestrial nutrient inputs. In summer, the prevailing plume combined with biological activities in the strong mixing area and outer estuary increased the abundance of 3 N-DON molecules and a concurrent rise in the abundance of DON compounds containing only carbon, hydrogen, oxygen, and nitrogen (CHON), DON compounds containing carbon, hydrogen, oxygen, nitrogen, sulfur, and phosphorus (CHONSP), and CHONS. This trend also underscores the expanding role of marine plankton and microbes in the utilization of DON compounds containing carbon, hydrogen, oxygen, nitrogen, and phosphorus (CHONP). These findings provide details of tDON transformation processes at the molecular level in a river-dominated estuary and underline the estuarine hydrodynamics involved in transporting and altering DON within the estuary.


Asunto(s)
Materia Orgánica Disuelta , Hidrodinámica , Nitrógeno/análisis , Ríos , Estuarios , Carbono/análisis , Oxígeno/análisis , Azufre/análisis , Hidrógeno/análisis , Fósforo/análisis
16.
Anal Chem ; 96(2): 866-875, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38164718

RESUMEN

Despite extensive efforts, point-of-care testing (POCT) of protein markers with high sensitivity and specificity and at a low cost remains challenging. In this work, we developed an aptamer-CRISPR/Cas12a-regulated liquid crystal sensor (ALICS), which achieved ultrasensitive protein detection using a smartphone-coupled portable device. Specifically, a DNA probe that contained an aptamer sequence for the protein target and an activation sequence for the Cas12a-crRNA complex was prefixed on a substrate and was released in the presence of target. The activation sequence of the DNA probe then bound to the Cas12a-crRNA complex to activate the collateral cleavage reaction, producing a bright-to-dark optical change in a DNA-functionalized liquid crystal interface. The optical image was captured by a smartphone for quantification of the target concentration. For the two model proteins, SARS-CoV-2 nucleocapsid protein (N protein) and carcino-embryonic antigen (CEA), ALICS achieved detection limits of 0.4 and 20 pg/mL, respectively, which are higher than the typical sensitivity of the SARS-CoV-2 test and the clinical CEA test. In the clinical sample tests, ALICS also exhibited superior performances compared to those of the commercial ELISA and lateral flow test kits. Overall, ALICS represents an ultrasensitive and cost-effective platform for POCT, showing a great potential for pathogen detection and disease monitoring under resource-limited conditions.


Asunto(s)
Técnicas Biosensibles , Cristales Líquidos , Sistemas de Atención de Punto , Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas , Oligonucleótidos , Sondas de ADN
17.
Mar Pollut Bull ; 199: 115940, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38150979

RESUMEN

In the recent study, we investigated the seasonal variations in root exudation and microbial community structure in the rhizosphere of seagrass Enhalus acoroides in the South China Sea. We found that the quantity and quality of root exudates varied seasonally, with higher exudation rates and more bioavailable dissolved organic matter (DOM) during the seedling and vegetative stages in spring and summer. Using Illumina NovaSeq sequencing, we analyzed bacterial and fungal communities and discovered that microbial diversity and composition were influenced by root exudate characteristics s and seagrass biomass, which were strongly dependent on seagrass growth stages. Certain bacterial groups, such as Ruegeria, Sulfurovum, Photobacterium, and Ralstonia were closely associated with root exudation and may contribute to sulfur cycling, nitrogen fixation, and carbon remineralization, which were important for plant early development. Similarly, specific fungal taxa, including Astraeus, Alternaria, Rocella, and Tomentella, were enriched in spring and summer and showed growth-promoting abilities. Overall, our study suggests that seagrass secretes different compounds in its exudates at various developmental stages, shaping the rhizosphere microbial assemblages.


Asunto(s)
Microbiota , Carbono , Rizosfera , Biomasa , Crecimiento y Desarrollo , Raíces de Plantas/microbiología , Microbiología del Suelo
18.
Eco Environ Health ; 2(3): 161-175, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38074996

RESUMEN

Nanotechnology-enabled fertilizers and pesticides, especially those capable of releasing plant nutrients or pesticide active ingredients (AIs) in a controlled manner, can effectively enhance crop nutrition and protection while minimizing the environmental impacts of agricultural activities. Herein, we review the fundamentals and recent advances in nanofertilizers and nanopesticides with controlled-release properties, enabled by nanocarriers responsive to environmental and biological stimuli, including pH change, temperature, light, redox conditions, and the presence of enzymes. For pH-responsive nanocarriers, pH change can induce structural changes or degradation of the nanocarriers or cleave the bonding between nutrients/pesticide AIs and the nanocarriers. Similarly, temperature response typically involves structural changes in nanocarriers, and higher temperatures can accelerate the release by diffusion promoting or bond breaking. Photothermal materials enable responses to infrared light, and photolabile moieties (e.g., o-nitrobenzyl and azobenzene) are required for achieving ultraviolet light responses. Redox-responsive nanocarriers contain disulfide bonds or ferric iron, whereas enzyme-responsive nanocarriers typically contain the enzyme's substrate as a building block. For fabricating nanofertilizers, pH-responsive nanocarriers have been well explored, but only a few studies have reported temperature- and enzyme-responsive nanocarriers. In comparison, there have been more reports on nanopesticides, which are responsive to a range of stimuli, including many with dual- or triple-responsiveness. Nano-enabled controlled-release fertilizers and pesticides show tremendous potential for enhancing the utilization efficiency of nutrients and pesticide AIs. However, to expand their practical applications, future research should focus on optimizing their performance under realistic conditions, lowering costs, and addressing regulatory and public concerns over environmental and safety risks.

19.
Math Biosci Eng ; 20(9): 16913-16938, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37920040

RESUMEN

Existing pedestrian re-identification models generally have low pedestrian retrieval accuracy when encountering factors such as changes in pedestrian posture and occlusion because the network cannot fully express pedestrian feature information. Therefore, this paper proposes a method to address this problem by combining the attention mechanism with multi-scale feature fusion, and combining the proposed cross-attention module with the ResNet50 backbone network. In this way, the ability of the network to extract strong salient features is significantly improved; at the same time, using the multi-scale feature fusion module to extract multi-scale features from different depths of the network, achieving the complementary advantages between features through feature addition, feature concatenation and feature weight selection. In addition, a feature enhancement method and an efficient pedestrian retrieval strategy are proposed to jointly promote the accuracy of pedestrian retrieval from both the training and testing levels. When tested on the occluded pedestrian recognition datasets Partial-REID and Partial-iLIDS, the accuracy of this method reached 70.1% and 65.6% on the Rank-1 indicator respectively, and 82.2% and 80.5% on the Rank-3 indicator respectively. At the same time, it also achieved high recognition accuracy when tested on the Market1501 dataset and DukeMTMC-reid dataset, reaching 95.9% and 89.9% on the Rank-1 indicator respectively, 89.1% and 80.3% on the mAP indicator respectively, and 67% and 46.2% on the mINP indicator respectively. It can be seen that this method has achieved good results in solving the above problems.


Asunto(s)
Peatones , Humanos
20.
Eur J Med Res ; 28(1): 549, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38031121

RESUMEN

BACKGROUND: A scientific and comprehensive analysis of the current status and trends in the field of cancer-associated fibroblast (CAF) research is worth investigating. This study aims to investigate and visualize the development, research frontiers, and future trends in CAFs both quantitatively and qualitatively based on a bibliometric approach. METHODS: A total of 5518 publications were downloaded from the Science Citation Index Expanded of Web of Science Core Collection from 1999 to 2021 and identified for bibliometric analysis. Visualized approaches, OriginPro (version 9.8.0.200) and R (version 4.2.0) software tools were used to perform bibliometric and knowledge-map analysis. RESULTS: The number of publications on CAFs increased each year, and the same tendency was observed in the RRI. Apart from China, the countries with the largest number of publications and the most cited frequency were mainly Western developed countries, especially the USA. Cancers was the journal with the largest number of articles published in CAFs, and Oncology was the most popular research orientation. The most productive author was Lisanti MP, and the University of Texas System was ranked first in the institutions. In addition, the topics of CAFs could be divided into five categories, including tumor classification, prognostic study, oncologic therapies, tumor metabolism and tumor microenvironment. CONCLUSIONS: This is the first thoroughly scientific bibliometric analysis and visualized study of the global research field on CAFs over the past 20 years. The study may provide benefits for researchers to master CAFs' dynamic evolution and research trends.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Humanos , China , Análisis por Conglomerados , Conocimiento , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...