Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Int Immunopharmacol ; 142(Pt B): 113164, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39288622

RESUMEN

INTRODUCTION: Fibroblast-like synoviocytes (FLSs) play critical roles in synovial inflammation and aggression in rheumatoid arthritis (RA). Here, we explored the role of eukaryotic translation initiation factor 6 (eIF6) in regulating the biological behaviors of FLSs from patients with RA. METHODS: FLSs were isolated from the synovial tissues of RA patients. Gene expression was assessed via RT-qPCR, and protein expression was evaluated via Western blotting or immunohistochemistry. Proliferation and nascent peptide synthesis were evaluated via EdU incorporation and HPG labeling, respectively. Cell migration and invasion were observed via Transwell assays. Polysome profiling was conducted to analyze the distribution of ribosomes and combined mRNAs. The in vivo effect of eIF6 inhibition was evaluated in a collagen-induced arthritis (CIA) rat model. RESULTS: We found that eIF6 expression was elevated in FLSs and synovial tissues from RA patients compared to those from healthy controls and osteoarthritis patients. Knockdown of eIF6 inhibited the migration, invasion, inflammation, and proliferation of FLSs from patients with RA. Mechanistically, eIF6 knockdown downregulated ribosome biogenesis in FLSs from with RA, leading to a decrease in the proportion of polysome-associated specificity protein 1 (SP1) mRNA and a subsequent reduction in the translation initiation efficiency of SP1 mRNA. Thus, eIF6 controls SP1 expression through translation-mediated mechanisms. Interestingly, intra-articular eIF6 siRNA treatment attenuated symptoms and histological manifestations in CIA rats. CONCLUSIONS: Our findings suggest that an increase in synovial eIF6 might contribute to rheumatoid synovial inflammation and aggression and that targeting eIF6 may have therapeutic potential in RA patients.


Asunto(s)
Artritis Reumatoide , Ribosomas , Factor de Transcripción Sp1 , Membrana Sinovial , Sinoviocitos , Animales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ratas , Artritis Experimental/metabolismo , Artritis Reumatoide/metabolismo , Artritis Reumatoide/genética , Movimiento Celular , Proliferación Celular , Células Cultivadas , Factores de Iniciación de Péptidos/metabolismo , Factores de Iniciación de Péptidos/genética , Biosíntesis de Proteínas , Ribosomas/metabolismo , Factor de Transcripción Sp1/metabolismo , Factor de Transcripción Sp1/genética , Membrana Sinovial/patología , Membrana Sinovial/metabolismo , Sinoviocitos/metabolismo
2.
ACS Nano ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054775

RESUMEN

Light-driven active ion transport discovered in nanomaterials (e.g., graphene, metal-organic framework, and MXene) implicates crucial applications in membrane-based technology and energy conversion systems. However, it remains a challenge to achieve bulk assembly. Herein, we employ the scalable wood as a framework for in situ growth of MoS2 nanosheets to facilitate light-responsive ion transport. Owing to the aligned and negatively charged wood nanochannels, the MoS2-decorated wood exhibits an excellent nanofluidic conductivity of 8.3 × 10-5 S cm-1 in 1 × 10-6 M KCl. Asymmetric light illumination creates the separation of electrons and holes in MoS2 nanosheets, enabling ions to move uphill against a wide range of concentration gradients. As a result, the MoS2-decorated wood can pump ions uphill against a 20-fold concentration gradient at a light intensity of 300 mW cm-2. When the illumination is applied to the opposite side, the osmotic current along the 20-fold concentration gradient can be enhanced to 75.1 nA, and the corresponding osmotic energy conversion power density increases to more than 12.6 times that of the nonilluminated state. Based on the light-responsive behaviors, we are extending the use of MoS2-decorated wood as the ionic elements for nanofluidic circuits, such as ion switches, ion diodes, and ion transistors. This work provides a facile and scalable strategy for fabricating light-controlled nanofluidic devices from biomass materials.

3.
Adv Sci (Weinh) ; 11(30): e2309471, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38889269

RESUMEN

Patients with glycogen storage disease type Ib (GSD-Ib) frequently have inflammatory bowel disease (IBD). however, the underlying etiology remains unclear. Herein, this study finds that digestive symptoms are commonly observed in patients with GSD-Ib, presenting as single or multiple scattered deep round ulcers, inflammatory pseudo-polyps, obstructions, and strictures, which differ substantially from those in typical IBD. Distinct microbiota profiling and single-cell clustering of colonic mucosae in patients with GSD are conducted. Heterogeneous oral pathogenic enteric outgrowth induced by GSD is a potent inducer of gut microbiota immaturity and colonic macrophage accumulation. Specifically, a unique population of macrophages with high CCL4L2 expression is identified in response to pathogenic bacteria in the intestine. Hyper-activation of the CCL4L2-VSIR axis leads to increased expression of AGR2 and ZG16 in epithelial cells, which mediates the unique progression of IBD in GSD-Ib. Collectively, the microbiota-driven pathomechanism of IBD is demonstrated in GSD-Ib and revealed the active role of the CCL4L2-VSIR axis in the interaction between the microbiota and colonic mucosal immunity. Thus, targeting gut dysbiosis and/or the CCL4L2-VISR axis may represent a potential therapy for GSD-associated IBD.


Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/microbiología , Disbiosis/metabolismo , Disbiosis/microbiología , Disbiosis/inmunología , Humanos , Ratones , Masculino , Femenino , Animales , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/complicaciones , Modelos Animales de Enfermedad , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología
4.
Adv Sci (Weinh) ; 11(29): e2306860, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38864559

RESUMEN

Breast tumor-initiating cells (BTICs) of triple-negative breast cancer (TNBC) tissues actively repair DNA and are resistant to treatments including chemotherapy, radiotherapy, and targeted therapy. Herein, it is found that a previously reported secreted protein, sclerostin domain containing 1 (SOSTDC1), is abundantly expressed in BTICs of TNBC cells and positively correlated with a poor patient prognosis. SOSTDC1 knockdown impairs homologous recombination (HR) repair, BTIC maintenance, and sensitized bulk cells and BTICs to Olaparib. Mechanistically, following Olaparib treatment, SOSTDC1 translocates to the nucleus in an importin-α dependent manner. Nuclear SOSTDC1 interacts with the N-terminus of the nucleoprotein, chromatin helicase DNA-binding factor (CHD1), to promote HR repair and BTIC maintenance. Furthermore, nuclear SOSTDC1 bound to ß-transducin repeat-containing protein (ß-TrCP) binding motifs of CHD1 is found, thereby blocking the ß-TrCP-CHD1 interaction and inhibiting ß-TrCP-mediated CHD1 ubiquitination and degradation. Collectively, these findings identify a novel nuclear SOSTDC1 pathway in regulating HR repair and BTIC maintenance, providing insight into the TNBC therapeutic strategies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas de Unión al ADN , Ftalazinas , Piperazinas , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Femenino , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Piperazinas/farmacología , Ftalazinas/farmacología , Ratones , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Línea Celular Tumoral , Animales , Resistencia a Antineoplásicos/genética , Reparación del ADN por Recombinación/genética , Progresión de la Enfermedad , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Modelos Animales de Enfermedad , Núcleo Celular/metabolismo , ADN Helicasas
5.
Plant Cell ; 36(9): 3543-3561, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38842334

RESUMEN

Plasmodesmata connect adjoining plant cells, allowing molecules to move between the connected cells for communication and sharing resources. It has been well established that the plant polysaccharide callose is deposited at plasmodesmata, regulating their aperture and function. Among proteins involved in maintaining callose homeostasis, PLASMODESMATA-LOCATED PROTEINSs (PDLPs) promote callose deposition at plasmodesmata. This study explored the function of PDLP5 and PDLP6 in different cell types. We discovered that PDLP5 and PDLP6 are expressed in nonoverlapping cell types in Arabidopsis (Arabidopsis thaliana). The overexpression of PDLP5 and PDLP6 results in the overaccumulation of plasmodesmal callose at different cell interfaces, indicating that PDLP5 and PDLP6 are active in different cell types. We also observed 2 distinct patterns of starch accumulation in mature leaves of PDLP5 and PDLP6 overexpressors. An enzyme-catalyzed proximity labeling approach was used to identify putative functional partners of the PDLPs. We identified SUCROSE SYNTHASE 6 (SUS6) as a functional partner of PDLP6 in the vasculature. We further demonstrated that PDLP6 physically and genetically interacts with SUS6. In addition, CALLOSE SYNTHASE 7 (CALS7) physically interacts with SUS6 and PDLP6. Genetic interaction studies showed that CALS7 is required for PDLP6 function. We propose that PDLP6 functions with SUS6 and CALS7 in the vasculature to regulate plasmodesmal function.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Glucanos , Plasmodesmos , Arabidopsis/genética , Arabidopsis/metabolismo , Plasmodesmos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Glucanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Plantas Modificadas Genéticamente , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Almidón/metabolismo , Proteínas de la Membrana
6.
Cancer Res ; 84(14): 2282-2296, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38657120

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited therapeutic options. IL1 receptor type 2 (IL1R2) promotes breast tumor-initiating cell (BTIC) self-renewal and tumor growth in TNBC, indicating that targeting it could improve patient treatment. In this study, we observed that IL1R2 blockade strongly attenuated macrophage recruitment and the polarization of tumor-associated macrophages (TAM) to inhibit BTIC self-renewal and CD8+ T-cell exhaustion, which resulted in reduced tumor burden and prolonged survival in TNBC mouse models. IL1R2 activation by TAM-derived IL1ß increased PD-L1 expression by interacting with the transcription factor Yin Yang 1 (YY1) and inducing YY1 ubiquitination and proteasomal degradation in both TAMs and TNBC cells. Loss of YY1 alleviated the transcriptional repression of c-Fos, which is a transcriptional activator of PDL-1. Combined treatment with an IL1R2-neutralizing antibodies and anti-PD-1 led to enhanced antitumor efficacy and reduced TAMs, BTICs, and exhausted CD8+ T cells. These results suggest that IL1R2 blockade might be a strategy to potentiate immune checkpoint blockade efficacy in TNBC to improve patient outcomes. Significance: IL1R2 in both macrophages and breast cancer cells orchestrates an immunosuppressive tumor microenvironment by upregulating PD-L1 expression and can be targeted to enhance the efficacy of anti-PD-1 in triple-negative breast cancer.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Ratones , Humanos , Femenino , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Linfocitos T CD8-positivos/inmunología , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/efectos de los fármacos , Línea Celular Tumoral , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Factor de Transcripción YY1/metabolismo , Factor de Transcripción YY1/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/inmunología , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/efectos de los fármacos
7.
Zool Res ; 45(3): 506-517, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38682432

RESUMEN

Breast cancer metastasis is responsible for most breast cancer-related deaths and is influenced by many factors within the tumor ecosystem, including tumor cells and microenvironment. Breast cancer stem cells (BCSCs) constitute a small population of cancer cells with unique characteristics, including their capacity for self-renewal and differentiation. Studies have shown that BCSCs not only drive tumorigenesis but also play a crucial role in promoting metastasis in breast cancer. The tumor microenvironment (TME), composed of stromal cells, immune cells, blood vessel cells, fibroblasts, and microbes in proximity to cancer cells, is increasingly recognized for its crosstalk with BCSCs and role in BCSC survival, growth, and dissemination, thereby influencing metastatic ability. Hence, a thorough understanding of BCSCs and the TME is critical for unraveling the mechanisms underlying breast cancer metastasis. In this review, we summarize current knowledge on the roles of BCSCs and the TME in breast cancer metastasis, as well as the underlying regulatory mechanisms. Furthermore, we provide an overview of relevant mouse models used to study breast cancer metastasis, as well as treatment strategies and clinical trials addressing BCSC-TME interactions during metastasis. Overall, this study provides valuable insights for the development of effective therapeutic strategies to reduce breast cancer metastasis.


Asunto(s)
Neoplasias de la Mama , Metástasis de la Neoplasia , Células Madre Neoplásicas , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/patología , Modelos Animales de Enfermedad , Células Madre Neoplásicas/patología , Microambiente Tumoral
8.
Int J Biol Sci ; 20(6): 2130-2148, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617541

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with limited effective therapeutic options readily available. We have previously demonstrated that lovastatin, an FDA-approved lipid-lowering drug, selectively inhibits the stemness properties of TNBC. However, the intracellular targets of lovastatin in TNBC remain largely unknown. Here, we unexpectedly uncovered ribosome biogenesis as the predominant pathway targeted by lovastatin in TNBC. Lovastatin induced the translocation of ribosome biogenesis-related proteins including nucleophosmin (NPM), nucleolar and coiled-body phosphoprotein 1 (NOLC1), and the ribosomal protein RPL3. Lovastatin also suppressed the transcript levels of rRNAs and increased the nuclear protein level and transcriptional activity of p53, a master mediator of nucleolar stress. A prognostic model generated from 10 ribosome biogenesis-related genes showed outstanding performance in predicting the survival of TNBC patients. Mitochondrial ribosomal protein S27 (MRPS27), the top-ranked risky model gene, was highly expressed and correlated with tumor stage and lymph node involvement in TNBC. Mechanistically, MRPS27 knockdown inhibited the stemness properties and the malignant phenotypes of TNBC. Overexpression of MRPS27 attenuated the stemness-inhibitory effect of lovastatin in TNBC cells. Our findings reveal that dysregulated ribosome biogenesis is a targetable vulnerability and targeting MRPS27 could be a novel therapeutic strategy for TNBC patients.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Lovastatina/farmacología , Lovastatina/uso terapéutico , Proteínas Ribosómicas/genética , Proteínas Nucleares , Ribosomas/genética , Proteínas Mitocondriales
9.
J Cell Mol Med ; 28(8): e18292, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38652116

RESUMEN

Foodborne illnesses, particularly those caused by Salmonella enterica with its extensive array of over 2600 serovars, present a significant public health challenge. Therefore, prompt and precise identification of S. enterica serovars is essential for clinical relevance, which facilitates the understanding of S. enterica transmission routes and the determination of outbreak sources. Classical serotyping methods via molecular subtyping and genomic markers currently suffer from various limitations, such as labour intensiveness, time consumption, etc. Therefore, there is a pressing need to develop new diagnostic techniques. Surface-enhanced Raman spectroscopy (SERS) is a non-invasive diagnostic technique that can generate Raman spectra, based on which rapid and accurate discrimination of bacterial pathogens could be achieved. To generate SERS spectra, a Raman spectrometer is needed to detect and collect signals, which are divided into two types: the expensive benchtop spectrometer and the inexpensive handheld spectrometer. In this study, we compared the performance of two Raman spectrometers to discriminate four closely associated S. enterica serovars, that is, S. enterica subsp. enterica serovar dublin, enteritidis, typhi and typhimurium. Six machine learning algorithms were applied to analyse these SERS spectra. The support vector machine (SVM) model showed the highest accuracy for both handheld (99.97%) and benchtop (99.38%) Raman spectrometers. This study demonstrated that handheld Raman spectrometers achieved similar prediction accuracy as benchtop spectrometers when combined with machine learning models, providing an effective solution for rapid, accurate and cost-effective identification of closely associated S. enterica serovars.


Asunto(s)
Salmonella enterica , Serogrupo , Espectrometría Raman , Máquina de Vectores de Soporte , Espectrometría Raman/métodos , Salmonella enterica/aislamiento & purificación , Humanos , Algoritmos
10.
Protein Cell ; 15(6): 419-440, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38437016

RESUMEN

Tumor-resident microbiota in breast cancer promotes cancer initiation and malignant progression. However, targeting microbiota to improve the effects of breast cancer therapy has not been investigated in detail. Here, we evaluated the microbiota composition of breast tumors and found that enterotoxigenic Bacteroides fragilis (ETBF) was highly enriched in the tumors of patients who did not respond to taxane-based neoadjuvant chemotherapy. ETBF, albeit at low biomass, secreted the toxic protein BFT-1 to promote breast cancer cell stemness and chemoresistance. Mechanistic studies showed that BFT-1 directly bound to NOD1 and stabilized NOD1 protein. NOD1 was highly expressed on ALDH+ breast cancer stem cells (BCSCs) and cooperated with GAK to phosphorylate NUMB and promote its lysosomal degradation, thereby activating the NOTCH1-HEY1 signaling pathway to increase BCSCs. NOD1 inhibition and ETBF clearance increase the chemosensitivity of breast cancer by impairing BCSCs.


Asunto(s)
Toxinas Bacterianas , Neoplasias de la Mama , Resistencia a Antineoplásicos , Células Madre Neoplásicas , Proteína Adaptadora de Señalización NOD1 , Animales , Femenino , Humanos , Ratones , Toxinas Bacterianas/farmacología , Bacteroides fragilis/química , Neoplasias de la Mama/microbiología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Metaloendopeptidasas/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Proteína Adaptadora de Señalización NOD1/antagonistas & inhibidores , Proteína Adaptadora de Señalización NOD1/genética , Proteína Adaptadora de Señalización NOD1/metabolismo
11.
World J Microbiol Biotechnol ; 40(5): 146, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38538920

RESUMEN

Bacterial species within the Acinetobacter baumannii-calcoaceticus (Acb) complex are very similar and are difficult to discriminate. Misidentification of these species in human infection may lead to severe consequences in clinical settings. Therefore, it is important to accurately discriminate these pathogens within the Acb complex. Raman spectroscopy is a simple method that has been widely studied for bacterial identification with high similarities. In this study, we combined surfaced-enhanced Raman spectroscopy (SERS) with a set of machine learning algorithms for identifying species within the Acb complex. According to the results, the support vector machine (SVM) model achieved the best prediction accuracy at 98.33% with a fivefold cross-validation rate of 96.73%. Taken together, this study confirms that the SERS-SVM method provides a convenient way to discriminate between A. baumannii, Acinetobacter pittii, and Acinetobacter nosocomialis in the Acb complex, which shows an application potential for species identification of Acinetobacter baumannii-calcoaceticus complex in clinical settings in near future.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Acinetobacter , Humanos , Espectrometría Raman , Infecciones por Acinetobacter/microbiología
12.
J Biol Chem ; 300(3): 105766, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367669

RESUMEN

Arp2/3 complex nucleates branched actin filaments that drive membrane invagination during endocytosis and leading-edge protrusion in lamellipodia. Arp2/3 complex is maximally activated in vitro by binding of a WASP family protein to two sites-one on the Arp3 subunit and one spanning Arp2 and ARPC1-but the importance of each site in the regulation of force-producing actin networks is unclear. Here, we identify mutations in budding yeast Arp2/3 complex that decrease or block engagement of Las17, the budding yeast WASP, at each site. As in the mammalian system, both sites are required for maximal activation in vitro. Dimerization of Las17 partially restores activity of mutations at both CA-binding sites. Arp2/3 complexes defective at either site assemble force-producing actin networks in a bead motility assay, but their reduced activity hinders motility by decreasing actin assembly near the bead surface and by failing to suppress actin filament bundling within the networks. While even the most defective Las17-binding site mutants assembled actin filaments at endocytic sites, they showed significant internalization defects, potentially because they lack the proper architecture to drive plasma membrane remodeling. Together, our data indicate that both Las17-binding sites are important to assemble functional endocytic actin networks in budding yeast, but Arp2/3 complex retains some activity in vitro and in vivo even with a severe defect at either Las17-binding site.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina , Actinas , Proteínas de Saccharomyces cerevisiae , Proteína del Síndrome de Wiskott-Aldrich , Animales , Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Sitios de Unión , Mamíferos/metabolismo , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/metabolismo
13.
J Nanobiotechnology ; 22(1): 75, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38408974

RESUMEN

The capacity to identify small amounts of pathogens in real samples is extremely useful. Herein, we proposed a sensitive platform for detecting pathogens using cyclic DNA nanostructure@AuNP tags (CDNA) and a cascade primer exchange reaction (cPER). This platform employs wheat germ agglutinin-modified Fe3O4@Au magnetic nanoparticles (WMRs) to bind the E. coli O157:H7, and then triggers the cPER to generate branched DNA products for CDNA tag hybridization with high stability and amplified SERS signals. It can identify target pathogens as low as 1.91 CFU/mL and discriminate E. coli O157:H7 in complex samples such as water, milk, and serum, demonstrating comparable or greater sensitivity and accuracy than traditional qPCR. Moreover, the developed platform can detect low levels of E. coli O157:H7 in mouse serum, allowing the discrimination of mice with early-stage infection. Thus, this platform holds promise for food analysis and early infection diagnosis.


Asunto(s)
Escherichia coli O157 , Nanopartículas , Animales , Ratones , ADN Complementario , ADN , Escherichia coli O157/genética , Microbiología de Alimentos
15.
Theranostics ; 14(2): 662-680, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169511

RESUMEN

Rationale: Cancer local recurrence increases the mortality of patients, and might be caused by field cancerization, a pre-malignant alteration of normal epithelial cells. It has been suggested that cancer-derived small extracellular vesicles (CDEs) may contribute to field cancerization, but the underlying mechanisms remain poorly understood. In this study, we aim to identify the key regulatory factors within recipient cells under the instigation of CDEs. Methods: In vitro experiments were performed to demonstrate that CDEs promote the expression of CREPT in normal epithelial cells. TMT-based quantitative mass spectrometry was employed to investigate the proteomic differences between normal cells and tumor cells. Loss-of-function approaches by CRISPR-Cas9 system were used to assess the role of CREPT in CDEs-induced field cancerization. RNA-seq was performed to explore the genes regulated by CREPT during field cancerization. Results: CDEs promote field cancerization by inducing the expression of CREPT in non-malignant epithelial cells through activating the ERK signaling pathway. Intriguingly, CDEs failed to induce field cancerization when CREPT was deleted, highlighting the importance of CREPT. Transcriptomic analyses revealed that CDEs elicited inflammatory responses, primarily through activation of the TNF signaling pathway. CREPT, in turn, regulates the transduction of downstream signals of TNF by modulating the expression of TNFR2 and PI3K, thereby promoting inflammation-to-cancer transition. Conclusion: CREPT not only serves as a biomarker for field cancerization, but also emerges as a target for preventing the cancer local recurrence.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Humanos , Línea Celular Tumoral , Proteómica , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/genética , Proteínas de Neoplasias/genética , Vesículas Extracelulares/metabolismo , Neoplasias/genética
16.
NPJ Precis Oncol ; 8(1): 8, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200104

RESUMEN

Aberrant activation of the PI3K/AKT signaling axis along with the sustained phosphorylation of downstream BAD is associated with a poor outcome of TNBC. Herein, the phosphorylated to non-phosphorylated ratio of BAD, an effector of PI3K/AKT promoting cell survival, was observed to be correlated with worse clinicopathologic indicators of outcome, including higher grade, higher proliferative index and lymph node metastasis. The structural optimization of a previously reported inhibitor of BAD-Ser99 phosphorylation was therefore achieved to generate a small molecule inhibiting the phosphorylation of BAD at Ser99 with enhanced potency and improved oral bioavailability. The molecule 2-((4-(2,3-dichlorophenyl)piperazin-1-yl)(pyridin-3-yl)methyl) phenol (NCK) displayed no toxicity at supra-therapeutic doses and was therefore assessed for utility in TNBC. NCK promoted apoptosis and G0/G1 cell cycle arrest of TNBC cell lines in vitro, concordant with gene expression analyses, and reduced in vivo xenograft growth and metastatic burden, demonstrating efficacy as a single agent. Additionally, combinatorial oncology compound library screening demonstrated that NCK synergized with tyrosine kinase inhibitors (TKIs), specifically OSI-930 or Crizotinib in reducing cell viability and promoting apoptosis of TNBC cells. The synergistic effects of NCK and TKIs were also observed in vivo with complete regression of a percentage of TNBC cell line derived xenografts and prevention of metastatic spread. In patient-derived TNBC xenograft models, NCK prolonged survival times of host animals, and in combination with TKIs generated superior survival outcomes to single agent treatment. Hence, this study provides proof of concept to further develop rational and mechanistic based therapeutic strategies to ameliorate the outcome of TNBC.

17.
J Clin Lab Anal ; 38(1-2): e25008, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38235610

RESUMEN

PURPOSE: Blood culture (BC) remains the gold standard for the diagnosis of bloodstream infections. Improving the quality of clinical BC samples, optimizing BC performance, and accelerating antimicrobial susceptibility test (AST) results are essential for the early detection of bloodstream infections and specific treatments. METHODS: We conducted a retrospective multicenter study using 450,845 BC specimens from clinical laboratories obtained from 19 teaching hospitals between 1 January 2021 and 31 December 2021. We evaluated key performance indicators (KPIs), turnaround times (TATs), and frequency distributions of processing in BC specimens. We also evaluated the AST results of clinically significant isolates for four different laboratory workflow styles. RESULTS: Across the 10 common bacterial isolates (n = 16,865) and yeast isolates (n = 1011), the overall median (interquartile range) TATs of AST results were 2.67 (2.05-3.31) and 3.73 (2.98-4.64) days, respectively. The specimen collections mainly occurred between 06:00 and 24:00, and specimen reception and loadings mainly between 08:00 and 24:00. Based on the laboratory workflows of the BCs, 16 of the 19 hospitals were divided into four groups. Time to results (TTRs) from specimen collection to the AST reports were 2.35 (1.95-3.06), 2.61 (1.98-3.32), 2.99 (2.60-3.87), and 3.25 (2.80-3.98) days for groups I, II, III, and IV, respectively. CONCLUSION: This study shows the related BC KPIs and workflows in different Chinese hospitals, suggesting that laboratory workflow optimization can play important roles in shortening time to AST reports and initiation of appropriate timely treatment.


Asunto(s)
Laboratorios , Sepsis , Humanos , Cultivo de Sangre , Laboratorios Clínicos , Factores de Tiempo , Hospitales de Enseñanza , Sepsis/diagnóstico
18.
J Natl Cancer Inst ; 115(12): 1586-1596, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-37549066

RESUMEN

BACKGROUND: Tumor-infiltrating lymphocytes (TILs) and programmed cell death 1 ligand 1 (PD-L1) remain imperfect in predicting clinical outcomes of triple-negative breast cancer because outcomes do not always correlate with the expression of these biomarkers. Genomic and transcriptomic alterations that may contribute to the expression of these biomarkers remain incompletely uncovered. METHODS: We evaluated PD-L1 immunohistochemistry scores (SP142 and 28-8 assays) and TILs in our triple-negative breast cancer multiomics dataset and 2 immunotherapy clinical trial cohorts. Then, we analyzed genomic and transcriptomic alterations correlated with TILs, PD-L1 expression, and patient outcomes. RESULTS: Despite TILs serving as a decent predictor for triple-negative breast cancer clinical outcomes, exceptions remained. Our study revealed that several genomic alterations were correlated with unexpected events. In particular, PD-L1 expression may cause a paradoxical relationship between TILs and prognosis in certain patients. Consequently, we classified triple-negative breast cancers into 4 groups based on PD-L1 and TIL levels. The TIL-negative PD-L1-positive and TIL-positive PD-L1-negative groups were not typical "hot" tumors; both were associated with worse prognoses and lower immunotherapy efficacy than TIL-positive PD-L1-positive tumors. Copy number variation of PD-L1 and oncogenic signaling activation were correlated with PD-L1 expression in the TIL-negative PD-L1-positive group, whereas GSK3B-induced degradation may cause undetectable PD-L1 expression in the TIL-positive PD-L1-negative group. These factors have the potential to affect the predictive function of both PD-L1 and TILs. CONCLUSIONS: Several genomic and transcriptomic alterations may cause paradoxical effects among TILs, PD-L1 expression, and prognosis in triple-negative breast cancer. Investigating and targeting these factors will advance precision immunotherapy for patients with this disease.


Asunto(s)
Antígeno B7-H1 , Neoplasias de la Mama Triple Negativas , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Linfocitos Infiltrantes de Tumor/patología , Variaciones en el Número de Copia de ADN , Pronóstico , Biomarcadores , Genómica , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo
19.
Acta Pharm Sin B ; 13(4): 1686-1698, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37139408

RESUMEN

Triple-negative breast cancer (TNBC) is a nasty disease with extremely high malignancy and poor prognosis. Annexin A3 (ANXA3) is a potential prognosis biomarker, displaying an excellent correlation of ANXA3 overexpression with patients' poor prognosis. Silencing the expression of ANXA3 effectively inhibits the proliferation and metastasis of TNBC, suggesting that ANXA3 can be a promising therapeutic target to treat TNBC. Herein, we report a first-in-class ANXA3-targeted small molecule (R)-SL18, which demonstrated excellent anti-proliferative and anti-invasive activities to TNBC cells. (R)-SL18 directly bound to ANXA3 and increased its ubiquitination, thereby inducing ANXA3 degradation with moderate family selectivity. Importantly, (R)-SL18 showed a safe and effective therapeutic potency in a high ANXA3-expressing TNBC patient-derived xenograft model. Furthermore, (R)-SL18 could reduce the ß-catenin level, and accordingly inhibit the Wnt/ß-catenin signaling pathway in TNBC cells. Collectively, our data suggested that targeting degradation of ANXA3 by (R)-SL18 possesses the potential to treat TNBC.

20.
Clin Rheumatol ; 42(9): 2369-2376, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37219751

RESUMEN

OBJECTIVE: To evaluate the safety of secukinumab (SEC) in the treatment of patients with axial spondyloarthritis (axSpA) and concurrent hepatitis B virus (HBV) infection or latent tuberculosis infection (LTBI). METHODS: This is a retrospective cohort study. Adult axSpA patients with HBV infection or LTBI receiving SEC treatment for at least 3 months from March 2020 to July 2022 in Guangdong Provincial People's Hospital were included. Patients were screened for HBV infection and LTBI before SEC treatment. During follow-up, reactivation of HBV infection and LTBI was monitored. Relevant data were collected and analyzed. RESULTS: A total of 43 axSpA patients with HBV infection or LTBI were included, of whom 37 were with HBV infection, 6 were with LTBI. Six out of thirty-seven (16.2%) patients with axSpA and concurrent HBV infection exhibited HBV reactivation after 9.0 ± 5.7 months of SEC treatment. Among them, 3 patients had chronic HBV infection and received anti-HBV prophylaxis, 2 patients had chronic HBV infection but did not receive anti-HBV prophylaxis, and 1 patient had occult HBV infection and did not receive antiviral prophylaxis. None of the 6 axSpA patients with LTBI developed reactivation of LTBI, whether received anti-TB prophylaxis or not. CONCLUSIONS: HBV reactivation can occur in axSpA patients with different types of HBV infection undergoing SEC treatment, whether receive antiviral prophylaxis or not. Close monitoring of HBV reactivation in axSpA patients with HBV infection undergoing SEC treatment is mandatory. Anti-HBV prophylaxis may be beneficial. In contrast, SEC may be safe in axSpA patients with LTBI, even in patients not receiving anti-TB prophylaxis. Key Points •Currently, most evidence about the safety of SEC in patients with HBV infection and LTBI were from patients with psoriasis. Our study adds data about the safety of SEC in Chinese axSpA patients with concurrent HBV infection or LTBI in real-world clinical setting. •Our study showed that HBV reactivation can occur in axSpA patients with different types of HBV infection undergoing SEC treatment, whether receive antiviral prophylaxis or not. •Close monitoring of serum HBV markers, HBV DNA load, and liver function is mandatory in axSpA patients with chronic, occult, and resolved HBV infection undergoing SEC treatment. Anti-HBV prophylaxis may be beneficial in all HBsAg-positive patients and HBsAg-negative, HBcAb-positive patients at high risk of HBV reactivation who are receiving SEC therapy. •None of the axSpA patients with LTBI, whether received anti-TB prophylaxis or not, developed reactivation of LTBI in our study. SEC may be safe in axSpA patients with LTBI, even in patients not receiving anti-TB prophylaxis.


Asunto(s)
Hepatitis B Crónica , Hepatitis B , Tuberculosis Latente , Adulto , Humanos , Virus de la Hepatitis B/fisiología , Antígenos de Superficie de la Hepatitis B , Estudios Retrospectivos , Tuberculosis Latente/complicaciones , Tuberculosis Latente/tratamiento farmacológico , Antivirales/uso terapéutico , Activación Viral , Hepatitis B/complicaciones , Hepatitis B/tratamiento farmacológico , Hepatitis B Crónica/complicaciones , Hepatitis B Crónica/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...