Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2329, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485944

RESUMEN

Intragrain impurities can impart detrimental effects on the efficiency and stability of perovskite solar cells, but they are indiscernible to conventional characterizations and thus remain unexplored. Using in situ scanning transmission electron microscopy, we reveal that intragrain impurity nano-clusters inherited from either the solution synthesis or post-synthesis storage can revert to perovskites upon irradiation stimuli, leading to the counterintuitive amendment of crystalline grains. In conjunction with computational modelling, we atomically resolve crystallographic transformation modes for the annihilation of intragrain impurity nano-clusters and probe their impacts on optoelectronic properties. Such critical fundamental findings are translated for the device advancement. Adopting a scanning laser stimulus proven to heal intragrain impurity nano-clusters, we simultaneously boost the efficiency and stability of formamidinium-cesium perovskite solar cells, by virtual of improved optoelectronic properties and relaxed intra-crystal strain, respectively. This device engineering, inspired and guided by atomic-scale in situ microscopic imaging, presents a new prototype for solar cell advancement.

2.
Small ; 19(49): e2303255, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37606884

RESUMEN

Fluoro-substituted aromatic alkylammonium spacer cations are found effective to improve the performance of quasi-2D perovskite light-emitting diodes (PeLEDs). The fluorine substitution is generally attributed to the defect passivation, quantum well width control, and energy level adjustments. However, the substituted cations can also affect the crystallization process but is not thoroughly studied. Herein, a comparison study is carried out using bare PEA cation and three different fluoro-substituted PEA (x-F-PEA, x = o, ortho; m, meta; p, para) cations to investigate the impacts of different substitution sites on the perovskite crystallization and orientations. By using GIWAXS, p-F-PEA cation is found to induce the strongest preferential out-of-plane orientations with the best crystallinity in quasi-2D perovskite. Using dynamic light scattering (DLS) methods, larger colloidal particles (630 nm) are revealed in p-F-PEA precursor solutions than the PEA cations (350 nm). The larger particles can accelerate the crystallization process and induce out-of-plane orientation from increased dipole-dipole interaction. The transient absorption measurement confirms longer radiative recombination lifetime, proving beneficial effect of p-F-PEA cation. As a result, the fabricated p-F-PEA-based PeLEDs achieved the highest EQE of 15.2%, which is higher than those of PEA- (8.8%), o-F-PEA- (4.3%), and m-F-PEA-based (10.3%) PeLEDs.

3.
Small ; 19(28): e2208243, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37191327

RESUMEN

Inverted perovskite solar cells (IPSCs) have witnessed an impressive development in recent years. However, their efficiency is still significantly behind theoretical limits, and device instabilities hinder their commercialization. Two main obstacles to further enhancing their performance via one-step deposition are: 1) the unsatisfactory film quality of perovskite and 2) the poor surface contact. To address the above issues, 4-butanediol ammonium Bromide (BD) is utilized to passivate Pb2+ defects by forming PbN bonds and fill vacancies of formamidinium ions at the buried surface of perovskite. The wettability of poly [bis (4-phenyl) (2,4,6-triMethylphenyl) amine] films is also improved due to the formation of hydrogen bonds between PTAA and BD molecules, resulting in better surface contacts and enhanced perovskite crystallinity. As a result, BD-modified perovskite thin films show a significant increase in the mean grain size, as well as a dramatic enhancement in the PL decay lifetime. The BD-treated device exhibits an efficiency of up to 21.26%, considerably higher than the control device. Moreover, the modified devices show dramatically enhanced thermal and ambient stability compared to the control ones. This methodology paves the way to obtain high-quality perovskite films for fabricating high-performance IPSCs.

4.
Adv Mater ; 35(36): e2303061, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37235878

RESUMEN

2D perovskites based on Formamidinium (FA) hold the potential for excellent stability and a broad absorption range, making them attractive materials for solar cells. However, FA-based 2D perovskites produced via one-step processing exhibit poor crystallinity and random quasi-quantum wells (QWs), leading to subpar photovoltaic performance. In this study, a seed-induced growth approach is introduced employing MAPbCl3 and BDAPbI4 in the deposition of FA-based Dion-Jacobson 2D perovskite films. This method yields high-quality perovskite films as the seeds preferentially precipitate and serve as templates for the epitaxial growth of FA-based counterparts, effectively suppressing the δ phase. Moreover, the epitaxial growth facilitated by uniformly dispersed seeds results in simultaneous crystallization from top to bottom, efficiently mitigating random phases (n = 2, 3, 4…) induced by the diffusion of organic cations and, in turn, minimizing energy loss. The impact of seed-induced growth on the crystallization and phase distribution of FA-based 2D perovskites is systematically investigated. As a result, the optimized FA-based 2D perovskite solar cell delivers an outstanding efficiency of 20.0%, accompanied by a remarkable fill factor of 0.823. Additionally, the unencapsulated device demonstrates exceptional stability, maintaining 98% of its initial efficiency after 1344 h of storage.

5.
Redox Biol ; 62: 102663, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36924682

RESUMEN

Osteoarthritis (OA) is an age-related metabolic disease. Low-grade inflammation and oxidative stress are the last common pathway of OA. α-ketoglutarate (α-KG) is an essential physiological metabolite from the mitochondrial tricarboxylic acid (TCA) cycle, with multiple functions, including anti-inflammation and antioxidation, and exhibits decreased serum levels with age. Herein, we aimed to investigate the effect and mechanism of α-KG on OA. We first quantified the α-KG levels in human cartilage tissue and osteoarthritic chondrocytes induced by IL-1ß. Besides, IL-1ß-induced osteoarthritic chondrocytes were treated with different concentrations of α-KG. Chondrocyte proliferation and apoptosis, synthesis and degradation of extracellular matrix, and inflammation mediators were analyzed. RNA sequencing was used to explore the mechanism of α-KG, and mitophagy and oxidative stress levels were further detected. These results were verified in an anterior cruciate ligament transection (ACLT) induced age-related OA rat model. We found that α-KG content decreased by 31.32% in damaged medial cartilage than in normal lateral cartilage and by 36.85% in IL-1ß-induced human osteoarthritic chondrocytes compared to control. α-KG supplementation reversed IL-1ß-induced chondrocyte proliferation inhibition and apoptosis, increased the transcriptomic and proteinic expression of ACAN and COL2A1 in vivo and in vitro, but inhibited the expression of MMP13, ADAMTS5, IL-6, and TNF-α. In mechanism, α-KG promoted mitophagy and inhibited ROS generation, and these effects could be prevented by Mdivi-1 (a mitophagy inhibitor). Overall, α-KG content decreased in human OA cartilage and IL-1ß-induced osteoarthritic chondrocytes. Moreover, α-KG supplementation could alleviate osteoarthritic phenotype by regulating mitophagy and oxidative stress, suggesting its potential as a therapeutic target to ameliorate OA.


Asunto(s)
Ácidos Cetoglutáricos , Osteoartritis , Humanos , Ratas , Animales , Ácidos Cetoglutáricos/farmacología , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/uso terapéutico , Mitofagia , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Condrocitos/metabolismo , Estrés Oxidativo , Interleucina-1beta/metabolismo , Células Cultivadas
6.
Adv Mater ; 35(15): e2211155, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36688433

RESUMEN

Optomechanical reliability has emerged as an important criterion for evaluating the performance and commercialization potential of perovskite solar cells (PSCs) due to the mechanical-property mismatch of metal halide perovskites with other device layer. In this work, grain-boundary grooves, a rarely discussed film microstructural characteristic, are found to impart significant effects on the optomechanical reliability of perovskite-substrate heterointerfaces and thus PSC performance. By pre-burying iso-butylammonium chloride additive in the electron-transport layer (ETL), GB grooves (GBGs) are flattened and an optomechanically reliable perovskite heterointerface that resists photothermal fatigue is created. The improved mechanical integrity of the ETL-perovskite heterointerfaces also benefits the charge transport and chemical stability by facilitating carrier injection and reducing moisture or solvent trapping, respectively. Accordingly, high-performance PSCs which exhibit efficiency retentions of 94.8% under 440 h damp heat test (85% RH and 85 °C), and 93.0% under 2000 h continuous light soaking are achieved.

7.
Nat Commun ; 13(1): 6935, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376328

RESUMEN

Controlling the high-power laser transmittance is built on the diverse manipulation of multiple nonlinear absorption (NLA) processes in the nonlinear optical (NLO) materials. According to standard saturable absorption (SA) and reverse saturable absorption (RSA) model adapted for traditional semiconductor materials, the coexistence of SA and RSA will result in SA induced transparency at low laser intensity, yet switch to RSA with pump fluence increasing. Here, we observed, in contrast, an unusual RSA to SA conversion in quasi-two-dimensional (2D) perovskite film with a low threshold around 2.6 GW cm-2. With ultrafast transient absorption (TA) spectra measurement, such abnormal NLA is attributed to the competition between excitonic absorption enhancement and non-thermalized carrier induced bleaching. TA singularity from non-thermalized "Fermi Sea" is observed in quasi-2D perovskite film, indicating an ultrafast carrier thermalization within 100 fs. Moreover, the comparative study between the 2D and 3D perovskites uncovers the crucial role of hot-carrier effect to tune the NLA response. The ultrafast carrier cooling of quasi-2D perovskite is pointed out as an important factor to realize such abnormal NLA conversion process. These results provide fresh insights into the NLA mechanisms in low-dimensional perovskites, which may pave a promising way to diversify the NLO material applications.

8.
Small ; 18(47): e2203536, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36229405

RESUMEN

The interface of perovskite solar cells (PSCs) plays a significant role in influencing their performance, yet there is still scarce research focusing on their difficult-to-expose bottom interfaces. Herein, ethylammonium bromide (EABr) is introduced into the bottom interface and its passivation effects are studied directly. First, EABr can improve substrate wettability, which is beneficial for the perovskite-film deposition. By lifting off the perovskite film spontaneously from the substrate, it is found that EABr can significantly reduce the amount of unreacted PbI2 at the bottom interface. These PbI2 crystals have been recently identified as a major defect source and degradation site for perovskite film. Meanwhile, EABr also lifts the valence band maximum at the bottom side of perovskite from -5.38 to -5.09 eV, facilitating better hole transfer. Such a improvement is also verified by the study of charge carrier dynamics. Through introducing EABr, all photovoltaic parameters of the inverted PSCs are improved, and their power conversion efficiency (PCE) increases from 20.41% to 21.06%. The study highlights the importance of direct characterization of the bottom interface for a better passivation effect.

9.
Small ; 18(24): e2201694, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35578914

RESUMEN

Inverted perovskite solar cells (PSCs) have received widespread attention due to their facile fabrication and wide applications. However, their power conversion efficiency (PCE) is reported lower than that of regular PSCs because of the undesirable interfacial contact between perovskite and the hydrophobic hole transport layer (HTL). Here, an interface regulation strategy is proposed to overcome this limitation. A small molecule ([2-(9H-carbazol-9-yl) ethyl] phosphonic acid, abbreviated as 2P), composed of carbazole and phosphonic acid groups, is inserted between perovskite and HTL. Morphological characterization and theoretical calculation reveal that perovskite bonds stronger on 2P-modified HTL than on pristine HTL. The improved interfacial contact facilitates hole extraction and retards degradation. Upon the incorporation of 2P, inverted PSCs deliver a high PCE of over 22% with superior stability, keeping 84.6% of initial efficiency after 7200 h storage under an ambient atmosphere with a relative humidity of ≈30-40%. This strategy provides a simple and efficient way to boost the performance of inverted PSCs.

10.
Nanoscale ; 14(3): 919-929, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34988562

RESUMEN

Quasi-2D metal halide perovskites are promising candidates for light-emitting applications owing to their large exciton binding energy and strong quantum confinement effect. Usually, quasi-2D perovskites are composed of multiple phases with various numbers of layers (n) of metal halide octahedron sheets, enabling light emission from the lowest-bandgap phase by cascade energy transfer. However, the energy transfer processes are extremely sensitive to the phase distribution and trap density in the quasi-2D perovskite films, and the insufficient energy transfer between different-n phases and the defect-induced traps would result in nonradiative losses. Here, significantly reduced nonradiative losses in the quasi-2D perovskite films are achieved by tailoring the low-dimensional phase components and lowering the density of trap states. Butylammonium bromide (BABr) and potassium thiocyanate (KSCN) are employed to synergistically decrease the nonradiative recombination in the quasi-2D perovskite films of PEABr : CsPbBr3. The incorporation of BABr is found to suppress the formation of the n = 1 phase, while adding KSCN can further reduce the low-n phases, passivate the notorious defects and improve the alignment of the high-n phases. By incorporating appropriate contents of BABr and KSCN, the resultant quasi-2D perovskite films show high photoluminescence quantum yield (PLQY) and highly ordered crystal orientation, which enable not only the green light-emitting diodes (LEDs) with a high external quantum efficiency (EQE) of 16.3%, but also the amplified spontaneous emission (ASE) with a low threshold of 2.6 µJ cm-2. These findings provide a simple and effective strategy to develop high-quality quasi-2D perovskites for LED and laser applications.

11.
ACS Appl Mater Interfaces ; 14(2): 3284-3292, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34989549

RESUMEN

Inverted perovskite solar cells (PSCs) have gained rapid progress and increasing research interest in recent years. The poly (triarylamine) (PTAA) is the most frequently used semiconductor in the hole-transporting layer (HTL) in inverted PSCs for its favorable highest occupied molecular orbital energy level (-5.2 eV), excellent carrier mobility, and low-temperature solution processability. However, its intrinsic hydrophobic property hinders the growth of high-quality perovskite on the PTAA film, which is one of the main obstacles that limits the further development of inverted PSCs. Herein, a donor-acceptor-donor type organic molecule, 4,4',4″-(1-hexyl-1H-dithieno [3',2':3,4; 2″,3″:5,6] benzo[1,2-d] imidazole-2,5,8-triyl) tris (N,N-bis(4-methoxyphenyl) aniline) (denoted as M2), is employed to modify the surface of PTAA. The PTAA/M2 composite hole transport layer facilitates the growth of perovskite films due to ameliorated hydrophobic property of PTAA. PTAA/M2 also exhibits enhanced hole mobility and conductivity than pristine PTAA. With enhanced crystallinity and hole extraction ability, using PTAA/M2 instead of pure PTAA as HTL, the power-conversion efficiency of inverted PSC increases from 18.67% to 20.23%. Furthermore, its operational stability is also enhanced. Our methodology carves out a novel path for addressing the hydrophobic issue of PTAA and improving the efficiency and photostability of inverted PSCs.

12.
Sheng Wu Gong Cheng Xue Bao ; 37(9): 3348-3360, 2021 Sep 25.
Artículo en Chino | MEDLINE | ID: mdl-34622641

RESUMEN

Tyrosine is an important aromatic amino acid. Besides its nutritional value, tyrosine is also an important precursor for the synthesis of coumarins and flavonoids. Previously, our laboratory constructed a Saccharomyces cerevisiae strain LTH0 (ARO4K229L, ARO7G141S, Δaro10, Δzwf1, Δura3) where tyrosine feedback inhibition was released. In the present study, heterologous expression of betaxanthins synthesis genes DOD (from Mirabilis jalapa) and CYP76AD1 (from sugar beet B. vulgaris) in strain LTH0 enabled production of yellow fluorescence. The engineered strain LTH0-DOD-CYP76AD1 was subjected to UV combined with ARTP mutagenesis, followed by flow cytometry screening. Among the mutants screened, the fluorescence intensity of the mutant strain LTH2-5-DOD-CYP76AD1 at the excitation wavelength of 485 nm and emission wavelength of 505 nm was (5 941±435) AU/OD, which was 8.37 times higher than that of strain LTH0-DOD-CYP76AD1. Fourteen mutant strains were subjected to fermentation to evaluate their tyrosine producing ability. The highest extracellular tyrosine titer reached 26.8 mg/L, which was 3.96 times higher than that of strain LTH0-DOD-CYP76AD1. Heterologous expression of the tyrosine ammonia lyase FjTAL derived from Flavobacterium johnsoniae further increased the titer of coumaric acid to 119.8 mg/L, which was 1.02 times higher than that of the original strain LTH0-FjTAL.


Asunto(s)
Mirabilis , Saccharomyces cerevisiae , Flavobacterium , Ensayos Analíticos de Alto Rendimiento , Saccharomyces cerevisiae/genética , Tirosina
13.
Adv Mater ; 33(38): e2102816, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34338381

RESUMEN

With potential commercial applications, inverted perovskite solar cells (PSCs) have received wide-spread attentions as they are compatible with tandem devices and processed at low-temperature. Nevertheless, their efficiencies remain unsatisfactory due to insufficient film quality on hydrophobic hole transport layer and limited hole-blocking capability of the electron transport layer. Herein, 1,3,5-Tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi), an n-type semiconductor, is incorporated into the antisolvent to simultaneously regulate the grain growth and charge transport of perovskite films. TPBi facilitates the crystallization of perovskites along (100) orientation. Besides, TPBi is mainly distributed near the top surface of perovskite film and enhances the hole-blocking capability of the area adjacent to the surface. The superior properties of this film lead to a remarkable improvement in the open-circuit voltage of inverted PSCs. The champion device achieves a high power conversion efficiency of 21.79% while keeping ≈92% of its initial value after 1000 h storage in the ambient atmosphere. This work provides an effective way to evidently promote the performance of inverted PSCs and illustrates its underlaying mechanism.

14.
ACS Appl Mater Interfaces ; 13(26): 30891-30901, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34156815

RESUMEN

The level of hardware or information security can be increased by applying physical unclonable functions (PUFs), which have a high complexity and unique nonreplicability and are based on random physical patterns generated by nature, to anticounterfeiting and encryption technologies. The preparation of PUFs should be as simple and convenient as possible, while maintaining the high complexity and stability of PUFs to ensure high reliability in use. In this study, an all-inorganic perovskite single-crystal array with a controllable morphology and a random size was prepared by a one-step recrystallization method in a solvent atmosphere to generate all-photonic cryptographic primitives. The nondeterministic size of the perovskite nanorods mainly arises from crystal growth in an indeterminate direction, producing a high entropy for the system. The cavity-size-dependent lasing emission behavior of perovskite single crystals was investigated as a preliminary exploration of the generation of all-photonic cryptographic primitives. The lasing-mode number was positively correlated with the length of the perovskite nanorods. Therefore, the prepared perovskite nanorod array with random sizes can be transformed into a quaternary cryptographic key array following encoding rules based on the lasing-mode number. Superior lasing stability was observed for the all-inorganic perovskite under continuous excitation, demonstrating the high reliability of this system.

15.
Small ; 17(43): e2100560, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33817963

RESUMEN

Ruddlesden-Popper (RP) metal halide perovskites are considered as promising optoelectronic materials due to their good environmental stability and desirable optoelectronic properties. However, the phase composition and ordering in the deposited film, with a fixed ratio of large organic spacer cation in the precursor solution, are hard to be further tailored for specific optoelectronic applications. Herein, it is shown that even with a fixed spacer cation ratio, the phase composition and ordering can still be largely regulated by utilizing different crystallization kinetics of various cations with the inorganic octahedral lead halide. By using two different short cations to compete with the large spacer cation, the phase composition can be continuously tailored from thin multiple quantum wells (MQWs) dominated to 3D perovskite dominated. The phase ordering can be reversed from small n phases' prior to large n phases' prior near the substrate. Finally, with the same amount of large spacer cation protection, the perovskite can be tailored for both high-performance electroluminescence and photovoltaics with favorable energetic landscape for the corresponding desired first-order excitonic recombination and second-order free electron-hole recombination, respectively. This exploration substantially contributes to the understanding of precise phase engineering in RP perovskite and may provide a new insight into the design of multiple functional devices.

16.
Nanoscale Adv ; 3(8): 2305-2315, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-36133753

RESUMEN

Interface passivation plays a pivotal role in achieving high-efficiency organic metal halide perovskite solar cells (PSCs). It has been recently revealed that atomic layer deposition (ALD) of wide-band gap oxides shows great potential to effectively passivate defects at the interface, and ALD is also of great technological promise for industrial upscaling. However, the conflicting observations of ALD passivation are often reported in the literature, even with very similar ALD conditions. To unveil the involved crucial mechanism, this work carefully investigates the evolution of a representative MAPbI3 perovskite surface during the ALD of Al2O3, by employing the technique of in situ X-ray photoelectron spectroscopy. The ALD at 125 °C was found to cause significant degradation of the perovskite; lowering the deposition temperature can largely minimize the degradation, and 75 °C was found to be the best ALD temperature. Following this conclusion, inverted planar perovskite solar cells were prepared in ambient conditions with ALD Al2O3 interlayers. Indeed, cells with the interlayer deposited at 75 °C exhibited a significantly enhanced power conversion efficiency from 18.8% (champion 19.2%) to 20.0% (champion 20.4%). Photoluminescence measurements further evidence that the ALD layer can effectively passivate defect states at the perovskite surface. Considering the great representativeness and broad applicability of MAPbI3 and ALD Al2O3, the mechanism and strategy reported herein should be of significant value for the perovskite interface engineering in general.

17.
Nat Commun ; 11(1): 3361, 2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32681066

RESUMEN

Multiple ultrashort laser pulses are widely used in optical spectroscopy, optoelectronic manipulation, optical imaging and optical signal processing etc. The laser pulse multiplication, so far, is solely realized by using the optical setups or devices to modify the output laser pulse from the optical gain medium. The employment of these external techniques is because the gain medium itself is incapable of modifying or multiplying the generated laser pulse. Herein, with single femtosecond laser pulse excitation, we achieve the double-pulsed stimulated emission with pulse duration of around 40 ps and pulse interval of around 70 ps from metal-halide perovskite multiple quantum wells. These unique stimulated emissions originate from one fast vertical and the other slow lateral high-efficiency carrier funneling from low-dimensional to high-dimensional quantum wells. Furthermore, such gain medium surprisingly possesses nearly Auger-free stimulated emission. These insights enable us a fresh approach to multiple the ultrashort laser pulse by gain medium.

18.
J Phys Chem Lett ; 11(15): 5877-5882, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32584040

RESUMEN

Metal-halide perovskites are promising light-emitting materials due to their continually tunable emission peak, high color purity, high emission efficiency, and low cost. Incorporating some two-dimensional (2D) perovskites into the three-dimensional (3D) perovskite can facilitate carrier localization to the emitting area and reduce nonradiative recombination. However, the incorporated 2D perovskites typically contain diverse phases with different bandgaps and random distribution, which significantly limits the performance of perovskite light emitting diodes (PeLEDs). Furthermore, the morphology of the quasi-2D perovskite film is also a key issue to the device performance. Herein, through replacing part of FA+ with Cs+, the phase distribution and morphology of perovskite film can be tailored simultaneously. When 20% of FA+ is replaced by Cs+ in the perovskite film, the charge transfer efficiency is enhanced and the current leakage is suppressed. Eventually, the efficiency of PeLED is almost doubled and the stability is also significantly improved.

19.
Small ; 16(18): e1907513, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32307895

RESUMEN

Doped 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-MeOTAD), which acts as a hole-transporting layer (HTL), endows perovskite solar cells (PSCs) with excellent performance. However, the intrinsically hygroscopic nature of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) dopants also aggravates the moisture instability of PSCs. In this work, the origins of the moisture instability of spiro-MeOTAD HTLs are explored and strategies to enhance moisture resistance are proposed. After 780 h of aging in air, 52% of the initial power conversion efficiency (PCE) can be sustained by prolonging the mixing time of the precursor solution of spiro-MeOTAD to reduce accumulated LiTFSI. In contrast, only 7% of the initial PCE remains if the precursor solution is mixed briefly. By thermally annealing an HTL to evaporate residual tBP in spiro-MeOTAD, pinholes are completely eliminated and 65% of the initial PCE remains after the same aging time. In this study, the significance of the initial morphology of spiro-MeOTAD HTLs on device stability is analyzed and strategies based on physical morphology for controlling PSC moisture instability induced by HTL dopants are developed.

20.
J Phys Chem Lett ; 10(23): 7516-7522, 2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31729223

RESUMEN

ZnxCd1-xSe is regarded as a promising semiconducting material for optoelectronic devices. However, the tunable amplified spontaneous emission (ASE) properties and corresponding charge carrier recombination dynamics in ZnxCd1-xSe (0 ≤ x ≤ 1) nanowires (NWs) remain poorly understood. Herein, the charge carrier dynamics and ASE properties in ZnxCd1-xSe NWs were systematically investigated. In these NWs, the one/two-photon pumped ASE wavelength across the entire visible spectrum (480-725 nm) can be easily tuned via compositional engineering. The ASE threshold is closely related to the absorption coefficient and PL lifetime. At room temperature, free-carrier recombination is dominated in the low fluence pumped PL process. The ASE behavior is determined by exciton recombination in the high pump fluence (>1018 cm-3) region. These findings uncover the origin of the tunable PL/ASE properties in ZnxCd1-xSe NWs and establish them as having practical application as a series of lasing gain materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA