Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 669
Filtrar
1.
Chem Commun (Camb) ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38726610

RESUMEN

For the first time, a novel donor-acceptor structured COF with excellent photothermal conversion and mono-dispersity in various oils without any further modification is reported; it realized responsive friction reduction, excellent antiwear and long-time lubrication.

2.
J Chem Phys ; 160(19)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38757619

RESUMEN

The singlet fission process involves the conversion of one singlet excited state into two triplet states, which has significant potential for enhancing the energy utilization efficiency of solar cells. Carotenoid, a typical π conjugated chromophore, exhibits specific aggregate morphologies known to display singlet fission behavior. In this study, we investigate the singlet fission process in lycopene H-aggregates using femtosecond stimulated Raman spectroscopy aided by quantum chemical calculation. The experimental results reveal two reaction pathways that effectively relax the S2 (11Bu+) state populations in lycopene H-aggregates: a monomer-like singlet excited state relaxation pathway through S2 (11Bu+) → 11Bu- → S1 (21Ag-) and a dominant sequential singlet fission reaction pathway involving the S2 (11Bu+) state, followed by S* state, a triplet pair state [1(TT)], eventually leading to a long lifetime triplet state T1. Importantly, the presence of both anionic and cationic fingerprint Raman peaks in the S* state is indicative of a substantial charge-transfer character.

3.
Food Chem ; 450: 139284, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38640543

RESUMEN

Polyprenols (PPs) are compounds with excellent biological activities and are applied in food, pharmaceutical, and cosmetic industries. However, its strong non-polar nature makes it difficult to separate with many saturated impurities (such as saturated fatty acids) extracted together. Complexation extraction is an effective method for separating saturated and polyunsaturated compounds. In this study, mesoporous silica MCM-41 was modified by imidazole-based ionic liquids (IL) followed by coating these MCM-41-supported IL compounds with silver salt to construct π-complexing adsorbent (AgBF4/IL•MCM-41) to enrich PPs from Ginkgo biloba leaves (GBL) extract. The mesoporous π-complexing sorbent was characterized by small-angle X-ray scattering (SAXS), FTIR, and nitrogen adsorption-desorption. The effect of the ratio of silver salt to IL•MCM-41 on the adsorption capacity of polyprenols from GBL was compared, and the dosage of AgBF4 was determined to be 1.5 mmol/g IL•MCM-41. Adsorption isotherms and kinetics indicate that the π-complexing adsorbent has excellent PPs adsorption performance (153 mg/g at 30 °C) and a fast adsorption rate (the time to reach adsorption equilibrium is 210 s). The PPs were separated using the fixed bed after treatment for only one cycle with AgBF4/IL•MCM-41, and the content of PPs in the product was increased from 38.54% to 70.2%, with a recovery rate of 86.6%. The π-complexing adsorbent showed excellent reusability for ≥3 adsorption-desorption cycles.

4.
Sensors (Basel) ; 24(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38676192

RESUMEN

A new method based on a digital twin is proposed for fault diagnosis, in order to compensate for the shortcomings of the existing methods for fault diagnosis modeling, including the single fault type, low similarity, and poor visual effect of state monitoring. First, a fault diagnosis test platform is established to analyze faults under constant and variable speed conditions. Then, the obtained data are integrated into the Unity3D platform to realize online diagnosis and updated with real-time working status data. Finally, an industrial test of the digital twin model is conducted, allowing for its comparison with other advanced methods in order to verify its accuracy and application feasibility. It was found that the accuracy of the proposed method for the entire reducer was 99.5%, higher than that of other methods based on individual components (e.g., 93.5% for bearings, 96.3% for gear shafts, and 92.6% for shells).

5.
Mater Horiz ; 11(7): 1668-1678, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38476075

RESUMEN

Although stimuli-responsive microemulsions (MEMs) consisting of water, oil and surfactants have found extensive potential applications in industrial fields, a responsive MEM exhibiting either macroscale superlubricity or two friction states where its coefficient of friction (CoF) can be switched by more than one order of magnitude has not yet been reported. Moreover, although traditional liquid superlubricants can provide ultralow friction and wear, effective control over the friction between two contacting surfaces is crucial for both achieving accurate control of the operation of an instrument and fabricating smart devices. Here we create a thermo- and magneto-responsive MEM capable of providing superlubrication for metallic materials in a broad temperature range from -30 to 20 °C using n-hexane, water, surfactant DDACe ((C12H25)2N+(CH3)2[CeCl4]-) and ethylene glycol. The MEM can abruptly and dramatically switch its CoF by approximately 25 fold based on a thermally reversible MEM-emulsion (EM) transition. Its anti-freezing performance allows it to provide effective lubrication even when the surrounding temperature attains as low as -60 °C. Together with its facile preparation, ultrahigh colloidal stability and magnetically controlled migration, such a novel smart MEM is envisioned to find widespread applications in materials science.

6.
Small ; : e2311876, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38403845

RESUMEN

Traditional laser-assisted method (top-down synthesis strategy) is applied in the preparation of carbon dots (CDs) by cutting larger carbon materials, which requires harsh conditions, and the size distribution of the CDs is seldom monodisperse. In this work, heteroatom-doped CDs, represented by N,S co-doped CDs (N,S-CDs), can be prepared successfully by pulsed laser irradiation of heterocyclic aromatic hydrocarbons-based small molecule compound solution. The friction coefficient (COF) of base oil PAO decreases from 0.650 to 0.093, and the wear volume reduces by 92.0% accompanied by 1 wt.% N,S-CDs addition, while the load-bearing capacity is improved from 100 to 950 N. The excellent lubrication performance is mainly attributed to the formation of a robust tribofilm via a tribochemical reaction between N,S-CDs and friction pairs, and the N,S-CDs can play a mending effect and polishing effect for worn surfaces. Furthermore, the lubricant containing heteroatom doped CDs are capable of being prepared in situ via pulsed laser irradiation of heterocyclic aromatic hydrocarbons in base oil, which can avoid the redispersed problem of nano-additive in base oil to maintain long-term dispersion, with COF of 0.103 and low wear volume ≈1.99 × 105 µm3 (76.9% reduction) even after standing for 9 months.

7.
Quant Imaging Med Surg ; 14(2): 1616-1635, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38415168

RESUMEN

Background: The high-definition standard (HD-standard) scan mode has been proven to display stents better than the standard (STND) scan mode but with more image noise. Deep learning image reconstruction (DLIR) is capable of reducing image noise. This study examined the impact of HD-standard scan mode with DLIR algorithms on stent and coronary artery image quality in coronary computed tomography angiography (CCTA) via a comparison with conventional STND scan mode and adaptive statistical iterative reconstruction-Veo (ASIR-V) algorithms. Methods: The data of 121 patients who underwent HD-standard mode scans (group A: N=47, with coronary stent) or STND mode scans (group B: N=74, without coronary stent) were retrospectively collected. All images were reconstructed with ASIR-V at a level of 50% (ASIR-V50%) and a level of 80% (ASIR-V80%) and with DLIR at medium (DLIR-M) and high (DLIR-H) levels. The noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), artifact index (AI), and in-stent diameter were measured as objective evaluation parameters. Subjective assessment involved a 5-point scale for overall image quality, image noise, stent appearance, stent artifacts, vascular sharpness, and diagnostic confidence. Diagnostic confidence was evaluated based on the presence or absence of significant stenosis (≥50% lumen reduction). Both subjective and objective evaluations were conducted by two radiologists independently, with kappa and intraclass correlation statistics being used to test the interobserver agreement. Results: There were 76 evaluable stents in group A, and the DLIR-H algorithm significantly outperformed other algorithms, demonstrating the lowest noise (41.6±7.1/41.3±7.2) and AI (32.4±8.9/31.2±10.1), the highest SNR (14.6±3.5/15.0±3.5) and CNR (13.6±3.8/13.9±3.8), and the largest in-stent diameter (2.18±0.61/2.19±0.61) in representing true stent diameter (all P values <0.01), as well as the highest score in each subjective evaluation parameter. In group B, a total of 296 coronary arteries were evaluated, and the DLIR-H algorithm provided the best objective image quality, with statistically superior noise, SNR, and CNR compared with the other algorithms (all P values <0.05). Moreover, the HD-standard mode scan with DLIR provided better image quality and a lower radiation dose than did the STND mode scan with ASIR-V (P<0.01). Conclusions: HD-standard scan mode with DLIR-H improves image quality of both stents and coronary arteries on CCTA under a lower radiation dose.

8.
Small ; : e2312010, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368271

RESUMEN

The dispersion stability of nano-lubricating additives is crucial for the shelf life of lubricant and its practical applications. Nitrogen-sulfur co-doped carbon dots (N,S@CDs) via a one-step hydrothermal method with nitropyrene and thiourea as raw materials are hereby presented. The N and S elements are selectively distributed throughout the entire carbon skeleton with a doping amount of 22.6 at%. The as-synthesized N,S@CDs exhibit excellent dispersion stability in PEG200 and maintain stability for over one year. The experiment results indicate that N,S@CDs significantly improve the anti-wear and friction reduction properties of PEG200, while the friction coefficient is reduced from 0.25 to 0.09 with 1.5 wt% N,S@CDs addition, and the wear volume, depth, and width are reduced by 68%, 52%, and 57%, respectively. The good lubrication performance is attributed to N,S@CDs excellent dispersion stability, enhanced filling and polishing effects, and complex tribochemical reactions caused by heteroatom doping to form a stable protective film on the worn surface. Furthermore, the as-prepared N,S@CDs exhibit intrinsic fluorescence intensity in PEG200 with the photoluminescence quantum yield (PLQY) of 12.5% and remain fluorescent stable during the long-term friction process, therefore the N,S@CDs have a potential application prospect in non-destructive detection of oil leakage via fluorescence labeling method.

9.
Nanomicro Lett ; 16(1): 94, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252190

RESUMEN

Due to the mutual repulsion between their hydrophilic surface terminations and the high surface energy facilitating their random restacking, 2D MXene nanosheets usually cannot self-assemble into 3D macroscopic gels with various applications in the absence of proper linking agents. In this work, a rapid spontaneous gelation of Ti3C2Tx MXene with a very low dispersion concentration of 0.5 mg mL-1 into multifunctional architectures under moderate centrifugation is illustrated. The as-prepared MXene gels exhibit reconfigurable internal structures and tunable rheological, tribological, electrochemical, infrared-emissive and photothermal-conversion properties based on the pH-induced changes in the surface chemistry of Ti3C2Tx nanosheets. By adopting a gel with optimized pH value, high lubrication, exceptional specific capacitances (~ 635 and ~ 408 F g-1 at 5 and 100 mV s-1, respectively), long-term capacitance retention (~ 96.7% after 10,000 cycles) and high-precision screen- or extrusion-printing into different high-resolution anticounterfeiting patterns can be achieved, thus displaying extensive potential applications in the fields of semi-solid lubrication, controllable devices, supercapacitors, information encryption and infrared camouflaging.

10.
ACS Appl Mater Interfaces ; 16(3): 3911-3921, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38197650

RESUMEN

Herein, the novel core-shell organo-inorganic hybrid carbon nanospheres with encapsulated ultrafine bimetal nanocrystals were successfully prepared by a one-pot domino drive synthesis combined with postcarbonization. The excellent properties of the metals such as high strength and thermal conductivity are retained, and the poor dispersion of the metal in the oil could be improved by encapsulating the metal in organic-inorganic hybrid carbon nanospheres. The vanadium and wolframium nanocrystals embedded in nitrogen-doped carbon nanospheres (V/W@NCNs) manifested remarkable oil dispersity on account of the lipophilic organic phase of the carbon shell. It is worth noting that the as-obtained V/W@NCNs display better tribological properties compared with the base oil, such as a higher extreme pressure of 1250 N, a lower friction coefficient of about 0.09, and a significant reduction in wear volume of 91.5%, which are attributed to the robust protective film that was formed on the surface of the friction pair through mechanical deposition and physical and tribochemical reaction during the friction process.

11.
Soft Matter ; 20(2): 365-374, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38093713

RESUMEN

Anti-wear (AW) additives and friction modifiers (FMs) and their interactions in lubricants are critical to tribological performance. This research investigates the compatibility and synergism of three oil-soluble alkylamine-phosphate ionic liquids with friction modifiers, organomolybdenum compounds. Three proton-based ionic liquids (PILs) were synthesized using a simple, low-cost, and unadulterated procedure as well as the chain lengths of the PILs affected the effectiveness of friction reduction and anti-wear. For example, the effect of a short-chain PIL alone as an additive on friction and wear behavior was not significant, whereas a long-chain PIL was more effective. In addition, PILs appeared to be able to coexist with organic molybdenum compounds and worked synergistically with dialkyl dithiophosphate oxygen molybdenum (MoDDP) to produce a sustained low coefficient of boundary friction (the coefficient of friction approaching 0.042). We proposed a three-stage tribochemical process to explain this interaction of PILs + MoDDP with contact surfaces to form physically adsorbed friction-reducing films and chemically reactive wear-protective films. This study reveals the compatibility and synergistic effects of two common lubricant components, which can be used to guide lubricant development in the future.

12.
Sci Bull (Beijing) ; 69(2): 227-236, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38072707

RESUMEN

Traditional high strength engineering alloys suffer from serious surface brittleness and inferior wear performance when servicing under sliding contact at cryogenic temperature. Here, we report that the recently emerging CoCrNi multi-principal element alloy defies this trend and presents dramatically enhanced wear resistance when temperature decreases from 273 to 153 K, surpassing those of cryogenic austenitic steels. The temperature-dependent structure characteristics and deformation mechanisms influencing the cryogenic wear resistance of CoCrNi are clarified through microscopic observation and atomistic simulation. It is found that sliding-induced subsurface structures show distinct scenarios at different deformation temperatures. At cryogenic condition, significant grain refinement and a deep plastic zone give rise to an extended microstructural gradient below the surface, which can accommodate massive sliding deformation, in direct contrast to the strain localization and delamination at 273 K. Meanwhile, the temperature-dependent cryogenic deformation mechanisms (stacking fault networks and phase transformation) also provide additional strengthening and toughening of the subsurface material. These features make the CoCrNi alloy particularly wear resistant at cryogenic conditions and an excellent candidate for safety-critical applications.

13.
Int J Biol Macromol ; 256(Pt 1): 128289, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000570

RESUMEN

Lignocellulosic nanofibril (LCNF) is indispensable in numerous potential applications because of its unsurpassed quintessential characteristics. While it still remains a challenge to assemble LCNF in a facile and environmental economy-first manner. In this work, a simple and green one-step synthetic approach was reported to prepare a series of LCNF-containing versatile hydrogels using deep eutectic solvent (DES). In particular, the LCNF5% hydrogel (namely LCNF5%-gel) in this work perfectly integrated superior stretchability (∼643 %), and displayed a dramatically improved anti-swelling ability (25 %) compared to the control sample (neat DES hydrogel, 2252 %). Simultaneously, the LCNF5% hydrogel presented underwater adhesiveness and outstanding long-term low-temperature resistance (stable at -25 °C for a month). This novel multifunctional hydrogel, prepared by a facile and eco-friendly strategy, is potentially useful in wet adhesion or underwater applications.


Asunto(s)
Adhesivos , Disolventes Eutécticos Profundos , Lignina , Humanos , Temperatura , Edema , Hidrogeles
14.
Neuropathology ; 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37963650

RESUMEN

Primary central nervous system (PCNS) extranodal NK/T-cell lymphoma, nasal type (ENKTCL), is an exceedingly rare tumor. To the best of our knowledge, only 27 cases and only one reported aberrant CD20 expression have been documented in the literature. Here we present a second case of PCNS ENKTCL with aberrant CD20 expression in a 43-year-old immunocompetent Chinese female. The patient presented with tremors, weakness in the right upper limb, and a slow reaction. Magnetic resonance imaging revealed multiple brain lesions. A histological examination revealed a diffuse distribution of intermediate-sized pleomorphic lymphocytes with angiocentric growth. The tumor cells expressed CD2, CD3, CD56, T-cell intracellular antigen-1, granzyme B, and Epstein-Barr virus-encoded RNAs (EBERs), with additional partial and weak CD20 and CD30 expression. Despite a confirmatory pathological diagnosis, the patient refused treatment and was discharged, ultimately dying from the disease. In the literature review, the clinical, immunohistochemical, EBERs, treatment, and prognostic features of PCNS ENKTCL were summarized. Although PCNS ENKTCT is extremely rare, it does occur and should always be included in differential diagnoses. CD20 expression should be evaluated routinely with relevant markers. The accumulation of cases is crucial for developing an effective treatment strategy for this rare and aggressive malignancy.

15.
ACS Appl Mater Interfaces ; 15(48): 56192-56202, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38000784

RESUMEN

In this study, size-regulated MOFs (MZ) with high MBT loading were successfully synthesized by combining mercaptobenzothiazole (MBT), zinc salt, and 2-methylimidazole (2-MI). Subsequently, the MZ structure was utilized to encapsulate tannic acid-modified gallium-based liquid metal (GLM-TA), thereby acquiring a novel heterogeneous nanocomposite (GLM-TA@MZ). The results revealed that the as-prepared GLM-TA@MZ shows good antiwear and friction-reducing performance as an oil-based lubricant additive, the average friction coefficient was decreased to 0.091, and a wear volume was reduced to 0.95 × 104 µm3, which corresponds to a decrease of 52.3 and 97.2% as compared to base oil PAO. The excellent tribological properties of GLM-TA@MZ can be attributed to physical adsorption on the friction pair, followed by tribochemical reactions. As a result, a thick friction protection film (thickness of about 100 nm) containing Ga, Zn, and S elements was formed, which effectively reduced the contact area between the friction pairs, resulting in improved tribological performance. This study provides insights into the design of MOF-based nanocomposites for lubricating applications.

16.
J Mater Chem B ; 11(45): 10836-10844, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37929670

RESUMEN

The efficiency of photodynamic therapy (PDT) is related to the subcellular localization of photosensitizers (PSs) because organelles are associated with many fundamental life-sustaining activities. In this work, we synthesized a PS (CN) based on curcumin (CUR) and obtained enhanced PDT efficiency by simultaneously targeting lipid droplets (LDs) and the endoplasmic reticulum (ER). Compared with CUR, CN with a D-π-A-π-D structure possessed stronger intramolecular charge transfer features, resulting in longer absorption and emission wavelengths. In cell imaging experiments of CN using a confocal laser scanning microscope, a bright green emission in LDs and a weak orange emission in the ER were simultaneously observed due to its sensitivity to polarity. Surprisingly, CN with low singlet oxygen yields (0.13) exhibited an excellent photodynamic effect. Further experimental results showed that the phototoxicity of CN resulted in apoptosis by destroying the ER and ferroptosis by oxidizing polyunsaturated fatty acids (PUFAs) in LDs. This work paves the way for developing more effective photosensitizers with superior dual-targeting specificity.


Asunto(s)
Curcumina , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Curcumina/farmacología , Fotoquimioterapia/métodos , Retículo Endoplásmico , Oxígeno Singlete
17.
Biomaterials ; 303: 122380, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37925793

RESUMEN

Developing nanoplatforms integrating superior fluorescence imaging ability in second near-infrared (NIR-II) window and tumor microenvironment responsive multi-modal therapy holds great potential for real-time feedback of therapeutic efficacy and optimizing tumor inhibition. Herein, we developed a pH-sensitive pyrrolopyrrole aza-BODIPY-based amphiphilic molecule (PTG), which has a balanced NIR-II fluorescence brightness and photothermal effect. PTG is further co-assembled with a vascular disrupting agent (known as DMXAA) to prepare PTDG nanoparticles for combined anti-vascular/photothermal therapy and real-time monitoring of the tumor vascular disruption. Each PTG molecule has an active PT-3 core which is linked to two PEG chains via pH-sensitive ester bonds. The cleavage of ester bonds in the acidic tumor environment would tricker releases of DMXAA for anti-vascular therapy and further assemble PT-3 cores into micrometer particles for long term monitoring of the tumor progression. Furthermore, benefiting from the high brightness in the NIR-II region (119.61 M-1 cm-1) and long blood circulation time (t1/2 = 235.6 min) of PTDG nanoparticles, the tumor vascular disrupting process can be in situ visualized in real time during treatment. Overall, this study demonstrates a self-assembly strategy to build a pH-responsive NIR-II nanoplatform for real-time monitoring of tumor vascular disruption, long-term tracking tumor progression and combined anti-vascular/photothermal therapy.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Neoplasias/patología , Nanopartículas/química , Concentración de Iones de Hidrógeno , Ésteres , Línea Celular Tumoral , Fototerapia/métodos , Microambiente Tumoral
18.
Anal Chem ; 95(41): 15350-15356, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37784219

RESUMEN

Lipid droplets (LDs) are crucial organelles used to store lipids and participate in lipid metabolism in cells. The abnormal aggregation and polarity change of LDs are associated with the occurrence of diseases, such as steatosis. Herein, the polarity-sensitive probe TBPCPP with a donor-acceptor-π-acceptor (D-A-π-A) structure was designed and synthesized. The TBPCPP has a large Stokes shift (∼220 nm), excellent photostability, high LD targeting, and considerable two-photon absorption (TPA) cross-section (∼226 GM), enabling deep two-photon imaging (∼360 µm). In addition, the fluorescence lifetime of TBPCPP decreases linearly with increasing solvent polarity. Therefore, with the assistance of two-photon fluorescence lifetime imaging microscopy (TP-FLIM), TBPCPP has successfully achieved not only the visualization of polarity changes caused by LD accumulation in HepG-2 cells but also lipid-specific imaging and visualization of different polarities in lipid-rich regions in zebrafish for the first time. Furthermore, TP-FLIM revealed that the polarity gradually decreases during steatosis in HepG-2 cells, which provided new insights into the diagnosis of steatosis.


Asunto(s)
Gotas Lipídicas , Pez Cebra , Animales , Gotas Lipídicas/química , Microscopía Fluorescente/métodos , Fotones , Lípidos/análisis , Colorantes Fluorescentes/química
19.
Diagnostics (Basel) ; 13(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37835803

RESUMEN

(1) Background: Parkinson's disease (PD) is the second most common neurodegenerative disease. Early diagnosis and reliable clinical assessments are essential for appropriate therapy and improving patients' quality of life. Keystroke biometrics, which capture unique typing behavior, have shown potential for early PD diagnosis. This study aimed to evaluate keystroke biometric parameters from two datasets to identify indicators that can effectively distinguish de novo PD patients from healthy controls. (2) Methods: Data from natural typing tasks in Physionet were analyzed to estimate keystroke biometric parameters. The parameters investigated included alternating-finger tapping (afTap) and standard deviations of interkey latencies (ILSD) and release latencies (RLSD). Sensitivity rates were calculated to assess the discriminatory ability of these parameters. (3) Results: Significant differences were observed in three parameters, namely afTap, ILSD, and RLSD, between de novo PD patients and healthy controls. The sensitivity rates were high, with values of 83%, 88%, and 96% for afTap, ILSD, and RLSD, respectively. Correlation analysis revealed a significantly negative correlation between typing speed and number of words typed with the standard motor assessment for PD, UPDRS-III, in patients with early PD. (4) Conclusions: Simple algorithms utilizing keystroke biometric parameters can serve as effective screening tests in distinguishing de novo PD patients from healthy controls. Moreover, typing speed and number of words typed were identified as reliable tools for assessing clinical statuses in PD patients. These findings underscore the potential of keystroke biometrics for early PD diagnosis and clinical severity assessment.

20.
Nat Plants ; 9(12): 2095-2109, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37903986

RESUMEN

Light serves as the energy source for plants as well as a signal for growth and development during their whole life cycle. Seedling de-etiolation is the most dramatic manifestation of light-regulated plant development processes, as massive reprogramming of the plant transcriptome occurs at this time. Although several studies have reported about organ-specific development and expression induced by light, a systematic analysis of cell-type-specific differentiation and the associated transcriptional regulation is still lacking. Here we obtained single-cell transcriptional atlases for etiolated, de-etiolating and light-grown Arabidopsis thaliana seedlings. Informative cells from shoot and root tissues were grouped into 48 different cell clusters and finely annotated using multiple markers. With the determination of comprehensive developmental trajectories, we demonstrate light modulation of cell fate determination during guard cell specialization and vasculature development. Comparison of expression atlases between wild type and the pifq mutant indicates that phytochrome-interacting factors (PIFs) are involved in distinct developmental processes in endodermal and stomatal lineage cells via controlling cell-type-specific expression of target genes. These results provide information concerning the light signalling networks at the cell-type resolution, improving our understanding of how light regulates plant development at the cell-type and genome-wide levels. The obtained information could serve as a valuable resource for comprehensively investigating the molecular mechanism of cell development and differentiation in response to light.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Plantones , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Tiempo , Fitocromo/metabolismo , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA