Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Opt Lett ; 49(11): 3114-3117, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824341

RESUMEN

On-chip integrated metasurface driven by in-plane guided waves is of great interests in various light-field manipulation applications such as colorful augmented reality and holographic display. However, it remains a challenge to design colorful multichannel holography by a single on-chip metasurface. Here we present metasurfaces integrated on top of a guided-wave photonic slab that achieves multi-channel colorful holographic light display. An end-to-end scheme is used to inverse design the metasurface for projecting off-chip preset multiple patterns. Particular examples are presented for customized patterns that were encoded into the metasurface with a single-cell meta-atom, working simultaneously at RGB color channels and for several different diffractive distances, with polarization dependence. Holographic images are generated at 18 independent channels with such a single-cell metasurface. The proposed design scheme is easy to implement, and the resulting device is viable for fabrication, promising plenty of applications in nanophotonics.

2.
Anal Biochem ; : 115584, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38843975

RESUMEN

Using the amino acid sequences and analysis of selected known structures of Bt Cry toxins, Cry1Ab, Cry1Ac, Cry1Ah, Cry1B, Cry1C and Cry1F we specifically designed immunogens. After antibodies selection, broad-spectrum polyclonal antibodies (pAbs) and monoclonal antibody (namely 1A0-mAb) were obtained from rabbit and mouse, respectively. The produced pAbs displayed broad spectrum activity by recognizing Cry1 toxin, Cry2Aa, Cry2Ab and Cry3Aa with half maximal inhibitory concentration (IC50) values of 0.12-9.86 µg/mL. Similarly, 1A0-mAb showed broad spectrum activity, recognizing all of the above Cry protein (IC50 values of 4.66-20.46 µg/mL) with the exception of Cry2Aa. Using optimizations studies, 1A10-mAb was used as a capture antibody and pAbs as detection antibody. Double antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISAs) were established for Cry1 toxin, Cry2Ab and Cry3Aa with the limit of detection (LOD) values of 2.36 - 36.37 ng/mL, respectively. The present DAS-ELISAs had good accuracy and precisions for the determination of Cry toxin spiked tap water, corn, rice, soybeans and soil samples. In conclusion, the present study has successfully obtained broad-spectrum pAbs and mAb. Furthermore, the generated pAbs- and mAb-based DAS-ELISAs protocol can potentially be used for the broad-spectrum monitoring of eight common subtypes of Bt Cry toxins residues in food and environmental samples.

3.
J Invertebr Pathol ; 205: 108129, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38754546

RESUMEN

Bacillus thuringiensis (Bt) Cry2Aa is a member of the Cry pore-forming, 3-domain, toxin family with activity against both lepidopteran and dipteran insects. Although domains II and III of the Cry toxins are believed to represent the primary specificity determinant through specific binding to cell receptors, it has been proposed that the pore-forming domain I of Cry2Aa also has such a role. Thus, a greater understanding of the functions of Cry2Aa's different domains could potentially be helpful in the rational design of improved toxins. In this work, cry2Aa and its domain fragments (DI, DII, DIII, DI-II and DII-DIII) were subcloned into the vector pGEX-6P-1 and expressed in Escherichia coli. Each protein was recognized by anti-Cry2Aa antibodies and, except for the DII fragment, could block binding of the antibody to Cry2Aa. Cry2Aa and its DI and DI-II fragments bound to brush border membrane vesicles (BBMV) from H. armigera and also to a ca 150 kDa BBMV protein on a far western (ligand) blot. In contrast the DII, DIII and DII-III fragments bound to neither of these. None of the fragments were stable in H. armigera gut juice nor showed any toxicity towards this insect. Our results indicate that contrary to the general model of Cry toxin activity domain I plays a role in the binding of the toxin to the insect midgut.

4.
Biofilm ; 7: 100194, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38577556

RESUMEN

Vibrio parahaemolyticus is widely distributed in marine ecosystems. Magnesium ion (Mg2+) is the second most abundant metal cation in seawater, and plays important roles in the growth and gene expression of V. parahaemolyticus, but lacks the detailed mechanisms. In this study, the RNA sequencing data demonstrated that a total of 1494 genes was significantly regulated by Mg2+. The majority of the genes associated with lateral flagella, exopolysaccharide, type III secretion system 2, type VI secretion system (T6SS) 1, T6SS2, and thermostable direct hemolysin were downregulated. A total of 18 genes that may be involved in c-di-GMP metabolism and more than 80 genes encoding putative regulators were also significantly and differentially expressed in response to Mg2+, indicating that the adaptation process to Mg2+ stress may be strictly regulated by complex regulatory networks. In addition, Mg2+ promoted the proliferative speed, swimming motility and cell adhesion of V. parahaemolyticus, but inhibited the swarming motility, biofilm formation, and c-di-GMP production. However, Mg2+ had no effect on the production of capsular polysaccharide and cytoxicity against HeLa cells. Therefore, Mg2+ had a comprehensive impact on the physiology and gene expression of V. parahaemolyticus.

5.
J Agric Food Chem ; 72(3): 1582-1591, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38221880

RESUMEN

The widespread use of Bacillus thuringiensis toxins as insecticides has brought about resistance problems. Anti-idiotypic nanobody approaches provide new strategies for resistance management and toxin evolution. In this study, the monoclonal antibody generated against the receptor binding region Domain II of Cry2Aa toxin was used as a target to screen materials with insecticidal activity. After four rounds of screening, anti-idiotypic nanobody 1C12 was obtained from the natural alpaca nanobody phage display library. To better analyze the activity of 1C12, soluble 1C12 was expressed by the Escherichia coli BL21 (DE3). The results showed that 1C12 not only binds the midgut brush border membrane vesicles (BBMV) of two lepidopteran species and cadherin CR9-CR11 of three lepidopteran species but also inhibits Cry2Aa toxins from binding to CR9-CR11. The insect bioassay showed that soluble 1C12 caused 25.65% and 23.61% larvae mortality of Helicoverpa armigera and Plutella xylostella, respectively. Although 1C12 has low insecticidal activity, soluble 1C12 possesses the ability to screen a broad-spectrum recognition of the toxin binding region of lepidopteran cadherins and can be used for the identification of the toxin binding region of other lepidopteran cadherins and the subsequent evolution of Cry2Aa toxin. The present study demonstrates a new strategy to screen for the production of novel insecticides.


Asunto(s)
Bacillus thuringiensis , Insecticidas , Animales , Insecticidas/química , Endotoxinas/metabolismo , Bacillus thuringiensis/química , Cadherinas/metabolismo , Larva/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas Bacterianas/metabolismo
6.
Int J Biol Macromol ; 254(Pt 3): 128034, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37972832

RESUMEN

Bacillus thuringiensis (Bt) Cry toxins have been widely used in the development of genetically modified organisms (GMOs) for pest control. This work aimed to establish more cost effective and broader detection methods for commonly used Cry toxins. Using ligand blot and bio-layer interferometry, we confirmed that a recombinant toxin-binding fragments derived from Helicoverpa armigera cadherin-like protein (HaCad-TBR) could broadly bind Cry1Ab, Cry1Ac, Cry2Aa, and Cry2Ab with the affinity of 0.149, 0.402, 120, and 4.12 nM, respectively. Based on the affinity results, a novel receptor-antibody sandwich assay broadly detecting Cry1A and Cry2 toxins was developed by using HaCad-TBR as capture molecules, and anti-Cry1A/Cry2A polyclonal antibodies (pAbs) as the detection antibodies. The detection limit (LOD) for Cry1Ab, Cry1Ab, Cry2Aa, and Cry2Ab were 5.30, 5.75, 30.83 and 13.70 ng/mL. To distinguish Cry1A and Cry2A toxins in a singular test, anti-Cry1A pAbs and anti-Cry2A pAbs were labelled with different quantum dots (QDs). The LOD for the four toxins by receptor-QDs-pAbs sandwich assay were calculated to be 1.36, 4.71, 17.48, and 7.54 ng/mL, respectively. The two developed methods were validated by spiked rice and corn samples, suggesting they may potentially be used in monitoring and quantifying Cry toxins in food and environment.


Asunto(s)
Bacillus thuringiensis , Mariposas Nocturnas , Animales , Bacillus thuringiensis/metabolismo , Endotoxinas/metabolismo , Cadherinas/metabolismo , Ligandos , Proteínas Hemolisinas/metabolismo , Proteínas Bacterianas/metabolismo , Larva/metabolismo , Mariposas Nocturnas/metabolismo
7.
Biochem Biophys Res Commun ; 691: 149308, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38029542

RESUMEN

This study tried to generate anti-idiotypic antibodies (Ab2s) which mimic Cry2Aa toxin using a phage-display antibody library (2.8 × 107 CFU/mL). The latter was constructed from a mouse immunized with F (ab')2 fragments digested from anti-Cry2Aa polyclonal antibodies. The F (ab')2 fragments and Plutella xylostella (P. xylostella) brush border membrane vesicles (BBMV) were utilized as targets for selection. Eight mouse phage-display single-chain variable fragments (scFvs) were isolated and identified by enzyme-linked immunoassay (ELISA), PCR and DNA sequencing after four rounds of biopanning. Among them, M3 exhibited the highest binding affinity with F (ab')2, while M4 bound the best with the toxin binding region of cadherin of P. xylostella (PxCad-TBR). Both of these two fragments were chosen for prokaryotic expression. The expressed M3 and M4 proteins with molecular weights of 30 kDa were purified. The M4 showed a binding affinity of 29.9 ± 2.4 nM with the PxCad-TBR and resulted in 27.8 ± 4.3 % larvae mortality against P. xylostella. Computer-assisted molecular modeling and docking analysis showed that mouse scFv M4 mimicked some Cry2Aa toxin binding sites when interacting with PxCad-TBR. Therefore, anti-idiotypic antibodies generated by BBMV-based screening could be useful for the development of new bio-insecticides as an alternative to Cry2Aa toxin for pest control.


Asunto(s)
Bacteriófagos , Insecticidas , Lepidópteros , Anticuerpos de Cadena Única , Animales , Ratones , Biblioteca de Genes , Anticuerpos de Cadena Única/química , Endotoxinas/metabolismo , Anticuerpos Antiidiotipos , Biblioteca de Péptidos
8.
Anal Biochem ; 677: 115270, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37531991

RESUMEN

Bacillus thuringiensis (Bt) Cry toxins have been widely used in the development of genetically modified organisms (GMOs) for pest control. This work aimed to establish more cost effective methods for used Cry2Aa toxins. Three immunoassay methods (IC-ELISA, DAS-ELISA, and CLEIA) were successfully developed in this work. The mAb was used as the detecting antibody, for the IC-ELISA, the range of IC20 to IC80 was 1.11 µg/mL - 60.70 µg/mL, and an IC50 of 10.65 µg/mL. For the DAS-ELISA, the limit of detection (LOD) and limit of quantitation (LOQ) were 10.76 ng/mL and 20.70 ng/mL, respectively. For the CLEIA, the LOD and LOQ were 6.17 ng/mL and 7.40 ng/mL, respectively. The scFv-based detections were the most sensitive for detecting Cry2Aa. The LOD and LOQ for the DAS-ELISA were 118.75 ng/mL and 633.48 ng/mL, respectively. The LOD and LOQ for the CLEIA, read as 37.47 ng/mL and 70.23 ng/mL, respectively. The fact that Cry2Aa toxin was recovered in spiked grain samples further demonstrated that the approaches might be used to identify field samples. These methods provided good sensitivity, stability, and applicability for detecting Cry2Aa toxin, promising ultrasensitive monitoring and references for Cry toxins risk assessment.


Asunto(s)
Anticuerpos Monoclonales , Bacillus thuringiensis , Proteínas Bacterianas/análisis , Endotoxinas/análisis , Ensayo de Inmunoadsorción Enzimática/métodos , Proteínas Hemolisinas
9.
Nanotechnology ; 34(36)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37311448

RESUMEN

The local surface plasmon resonance (LSPR) effect has been widely used in various nanophotonic applications. However, because the LSPR effect is highly sensitive to the structure and geometry, it is desirable to efficiently search viable geometries for predefined local field enhancement spectrum. Herein we present a generative adversarial network-based LSPR nanoantenna design scheme. By encoding the antenna structure information into an red-green-blue (RGB) color image, the corresponding nanoantenna structure can be inverse-designed to achieve the required enhancement spectrum of the local field. The proposed scheme can accurately offer the multiple geometry layout for the customized specific spectrum in seconds, which could be beneficial for fast design and fabrication of plasmonic nanoantenna.

10.
Foods ; 12(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37174376

RESUMEN

In this study, we constructed a calculation model to determine the internal temperature field distribution in a medium-sized refrigeration truck with the dimensions of 4.1 m × 2.2 m × 2.2 m. Wind speed, air temperature, and carcass temperature were designated as the initial conditions. The k-ε model of computational fluid dynamics was used to simulate different wind speeds and ventilation duct settings on the carriage. Additionally, under specific boundary conditions, the speed of the air outlet, the types of ventilation ducts, and the carcass loads were all varied to determine the uniformity of the temperature field. The results showed that, when the air outlet speed was 5 m/s, the temperature field in the refrigerated truck was relatively more uniform. The simulated results were in good agreement with the measured results. The average absolute error was 0.35 °C, and the average relative error was 9.23%.

11.
Sheng Wu Gong Cheng Xue Bao ; 39(2): 446-458, 2023 Feb 25.
Artículo en Chino | MEDLINE | ID: mdl-36847082

RESUMEN

Bt Cry toxin is the mostly studied and widely used biological insect resistance protein, which plays a leading role in the green control of agricultural pests worldwide. However, with the wide application of its preparations and transgenic insecticidal crops, the resistance to target pests and potential ecological risks induced by the drive are increasingly prominent and attracting much attention. The researchers seek to explore new insecticidal protein materials that can simulate the insecticidal function of Bt Cry toxin. This will help to escort the sustainable and healthy production of crops, and relieve the pressure of target pests' resistance to Bt Cry toxin to a certain extent. In recent years, the author's team has proposed that Ab2ß anti-idiotype antibody has the property of mimicking antigen structure and function based on the "Immune network theory" of antibody. With the help of phage display antibody library and specific antibody high-throughput screening and identification technology, Bt Cry toxin antibody was designed as the coating target antigen, and a series of Ab2ß anti-idiotype antibodies (namely Bt Cry toxin insecticidal mimics) were screened from the phage antibody library. Among them, the lethality of Bt Cry toxin insecticidal mimics with the strongest activity was close to 80% of the corresponding original Bt Cry toxin, showing great promise for the targeted design of Bt Cry toxin insecticidal mimics. This paper systematically summarized the theoretical basis, technical conditions, research status, and discussed the development trend of relevant technologies and how to promote the application of existing achievements, aiming to facilitate the research and development of green insect-resistant materials.


Asunto(s)
Bacillus thuringiensis , Insecticidas , Insecticidas/farmacología , Insecticidas/química , Insecticidas/metabolismo , Endotoxinas/genética , Endotoxinas/farmacología , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Proteínas Bacterianas/química , Plantas Modificadas Genéticamente/genética , Control Biológico de Vectores
12.
Crit Rev Food Sci Nutr ; 63(29): 9694-9715, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35503432

RESUMEN

Chronic low-grade inflammation (CLGI) is closely associated with various chronic diseases. Researchers have paid attention to the comprehensive application and development of food materials with potential anti-inflammatory activity. Owing to their abundant nutrients and biological activities, coarse cereals have emerged as an important component of human diet. Increasing evidence has revealed their potential protective effects against CLGI in chronic conditions. However, this property has not been systematically discussed and summarized. In the present work, numerous published reports were reviewed to systematically analyze and summarize the protective effects of coarse cereals and their main active ingredients against CLGI. Their current utilization state was investigated. The future prospects, such as the synergistic effects among the active compounds in coarse cereals and the biomarker signatures of CLGI, were also discussed. Coarse cereals show promise as food diet resources for preventing CLGI in diseased individuals. Their active ingredients, including ß-glucan, resistant starch, arabinoxylan, phenolic acids, flavonoids, phytosterols and lignans, function against CLGI through multiple possible intracellular signaling pathways and immunomodulatory effects. Therefore, coarse cereals play a crucial role in the food industry due to their health effects on chronic diseases and are worthy of further development for possible application in modulating chronic inflammation.


Asunto(s)
Dieta , Grano Comestible , Humanos , Grano Comestible/metabolismo , Inflamación/metabolismo , Flavonoides/metabolismo , Enfermedad Crónica
13.
Anal Biochem ; 664: 115030, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36572217

RESUMEN

Anti-idiotypic antibodies (Ab2) are valuable tools that can be used for a better understanding of molecular mimicry and the immunological network. In this work, we showed a new application of a phage-displayed alpha-type Ab2 (Ab2α) to improve the sensitivity of an enzyme-linked immunosorbent assay (ELISA) detecting cyanobacterial toxin microcystin-LR (MC-LR). A monoclonal antibody (mAb) against MC-LR was used as an antigen to isolate binders in a camelid nanobody library. After three rounds of panning, three unique clones with strong binding against anti-MC-LR mAbs were isolated. These clones could specifically bind to anti-MC-LR mAbs without influencing mAbs binding with MC-LR, meaning these clones were Ab2αs. Based on the signal amplification effect of phage coat proteins and the non-competitive nature of Ab2α, a novel competitive ELISA method for MC-LR was established with a phage-displayed Ab2α. It showed that the phage-displayed Ab2α greatly enhanced the ELISA signal and sensitivity of the method was improved 3.5-fold to the conventional one. Combining with the optimization of pre-incubation time, the optimized ELISA decreased its limit of detection (LOD) from 4.5 ng/mL to 0.8 ng/mL (5.6-fold improvement). This new application of Ab2α may potentially be employed to improve the sensitivity of immunoassays for other environmental pollutants.


Asunto(s)
Bacteriófagos , Biblioteca de Péptidos , Ensayo de Inmunoadsorción Enzimática/métodos , Inmunoensayo , Anticuerpos Monoclonales
14.
Appl Biochem Biotechnol ; 195(4): 2709-2718, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36074237

RESUMEN

Antibodies are a useful tool for assistance to map the binding epitopes in Bacillus thuringiensis Cry toxins and their receptors, and even determine how receptors promote toxicity. In this work, a monoclonal antibody (mAb-1D2) was produced by the hybridoma cell line raised against Cry2Aa toxins, with a half inhibition concentration (IC50) of 9.16 µg/mL. The affinity constant of two recombinant toxin-binding fragments derived from Helicoverpa armigera and Plutella xylostella cadherin-like protein (HaCad-TBR or PxCad-TBR) to Cry2Aa toxin was measured to be 1.21 µM and 1.24 µM, respectively. Competitive ELISA showed that mAb-1D2 competed with HaCad-TBR or PxCad-TBR binding to Cry2Aa. Meanwhile, the toxicity of the Cry2Aa toxin to the H. armigera and P. xylostella larvae were greatly reduced when the toxin was mixed with mAb-1D2, which indicated that cadherin may play an important functional role in the toxicity of Cry2Aa. After transforming mAb-1D2 to a single-chain variable fragment (scFv), the hot spot residues of Cry2Aa with 1D2-scFv, PxCad-TBR, and HaCad-TBR were analyzed by molecular docking. It was demonstrated that the hot spot residues of Cry2Aa involving with 1D2-scFv interaction were mainly in Domain II, and some residues in Domain I. Moreover, mAb-1D2 and the two cadherin fragments shared the common hot spot residues on Cry2Aa, which could explain mAb-1D2 inhibited Cry2Aa binding with cadherin fragments. This monoclonal antibody could be a useful tool for identifying the binding epitopes between Cry2Aa and cadherin, and even assist to analyze the roles of cadherin in Cry2Aa toxicity.


Asunto(s)
Bacillus thuringiensis , Mariposas Nocturnas , Animales , Bacillus thuringiensis/metabolismo , Endotoxinas/toxicidad , Endotoxinas/metabolismo , Cadherinas/química , Cadherinas/metabolismo , Anticuerpos Monoclonales , Epítopos/análisis , Epítopos/química , Epítopos/metabolismo , Simulación del Acoplamiento Molecular , Toxinas de Bacillus thuringiensis/metabolismo , Larva , Proteínas Hemolisinas/toxicidad , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Proteínas Bacterianas/química
15.
Front Nutr ; 9: 990628, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211511

RESUMEN

Se-rich agro-foods are effective Se supplements for Se-deficient people, but the associated metals have potential risks to human health. Factors affecting the accumulation of Se and its associated metals in Se-rich agro-foods were obscure, and the prediction models for the accumulation of Se and its associated metals have not been established. In this study, 661 samples of Se-rich rice, garlic, black fungus, and eggs, four typical Se-rich agro-foods in China, and soil, matrix, feed, irrigation, and feeding water were collected and analyzed. The major associated metal for Se-rich rice and garlic was Cd, and that for Se-rich black fungus and egg was Cr. Se and its associated metal contents in Se-rich agro-foods were positively correlated with Se and metal contents in soil, matrix, feed, and matrix organic contents. The Se and Cd contents in Se-rich rice grain and garlic were positively and negatively correlated with soil pH, respectively. Eight models for predicting the content of Se and its main associated metals in Se-rich rice, garlic, black fungus, and eggs were established by multiple linear regression. The accuracy of the constructed models was further validated with blind samples. In summary, this study revealed the main associated metals, factors, and prediction models for Se and metal accumulation in four kinds of Se-rich agro-foods, thus helpful in producing high-quality and healthy Se-rich.

16.
Front Nutr ; 9: 972860, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159501

RESUMEN

Fermented soybean products are favorite foods worldwide because of their nutritional value and health effects. In this study, solid-state fermentation (SSF) of soybeans with Rhizopus oligosporus RT-3 was performed to investigate its nutraceutical potential. A rich enzyme system was released during SSF. Proteins were effectively transformed into small peptides and amino acids. The small peptide content increased by 13.64 times after SSF for 60 h. The antioxidant activity of soybeans was enhanced due to the release of phenolic compounds. The soluble phenolic content increased from 2.55 to 9.28 gallic acid equivalent (GAE) mg/g after SSF for 60 h and exhibited high correlations with microbial enzyme activities during SSF. The potential metabolic pathways being triggered during SSF indicated that the improved nutritional composition of soybean attributed to the biochemical reactions catalyzed by microbial enzymes. These findings demonstrated that SSF could evidently improve the nutritional value and prebiotic potential of soybeans.

17.
J Agric Food Chem ; 70(37): 11510-11519, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-35944165

RESUMEN

New insecticidal genes and approaches for pest control are a hot research area. In the present study, we explored a novel strategy for the generation of insecticidal proteins. The midgut cadherin of Helicoverpa armigera (H. armigera) was used as a target to screen materials that have insecticidal activity. After three rounds of panning, the phage-displayed human domain antibody B1F6, which not only binds to the H. armigera cadherin CR9-CR11 but also significantly inhibits Cry1Ac toxins from binding to CR9-CR11, was obtained from a phage-displayed human domain antibody (DAb) library. To better analyze the relevant activity of B1F6, soluble B1F6 protein was expressed by Escherichia coli BL21 (DE3). The cytotoxicity assays demonstrated that soluble B1F6 induced Sf9 cell death when expressing H. armigera cadherin on the cell membrane. The insect bioassay results showed that soluble B1F6 protein (90 µg/cm2) caused 49.5 ± 3.3% H. armigera larvae mortality. The midgut histological results showed that soluble B1F6 caused damage to the midgut epithelium of H. armigera larvae. The present study explored a new strategy and provided a basic material for the generation of new insecticidal materials.


Asunto(s)
Bacillus thuringiensis , Insecticidas , Mariposas Nocturnas , Animales , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Endotoxinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Hemolisinas/metabolismo , Humanos , Fragmentos de Inmunoglobulinas/metabolismo , Insecticidas/química , Larva/genética , Larva/metabolismo , Mariposas Nocturnas/metabolismo
18.
Int J Biol Macromol ; 209(Pt A): 586-596, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35346681

RESUMEN

It is extremely imminent to study a new strategy to manage agricultural pest like Plutella xylostella (P. xylostella) which is currently resistant to most of pesticides, including three domain-Cry toxins from Bacillus thuringiensis (Bt). In this study, we reported a phage displayed single domain antibody screening from human domain antibody (DAb) library targeted on Spodoptera frugiperda 9 (Sf9) cells expressed Cry1Ac toxin receptor, ATP-dependent binding cassette transporter C2 in P. xylostella (PxABCC2). After three rounds of panning, three cytotoxic antibodies (1D2, 2B7, 3C4) were obtained from thirty-eight antibodies and displayed high binding ability towards PxABCC2-expressed Sf9 cells. Through homology modeling and molecular docking, the interaction mode indicated that the most cytotoxic 1D2 of the three antibodies presented the lowest binding free energy required and had the most hydrogen bond formed with PxABCC2 in molecular docking analysis. Functional assay of key regions in 1D2 via Alanine replacement indicated that complementarity-determining region (CDR) 3 played a crucial role in antibody exerts binding activity and cytotoxicity. This study provides the first trial for discovering of potential cytotoxic antibodies from the human antibody library via specific receptor-expressed insect cell system biopanning.


Asunto(s)
Bacillus thuringiensis , Bacteriófagos , Mariposas Nocturnas , Anticuerpos de Dominio Único , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Bacillus thuringiensis/química , Proteínas Bacterianas/metabolismo , Bacteriófagos/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Humanos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Resistencia a los Insecticidas , Larva/metabolismo , Simulación del Acoplamiento Molecular , Mariposas Nocturnas/metabolismo , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Anticuerpos de Dominio Único/metabolismo
19.
Environ Pollut ; 301: 118980, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35150800

RESUMEN

Selenium is an essential trace element for humans and obtained from diary diets. The consumption of selenium-rich agricultural food is an efficient way to obtain selenium, but the quality and safety of selenium-rich agro-food are always affected by their associated heavy metals, even poses a potential threaten to human health. In this research, a sampling survey of heavy metals contents in selenium-rich rice was conducted, 182 sets of selenium-rich rice samples were collected from five selenium-rich rice-producing areas of China, and the accumulation of selenium and cadmium were found to be associated in rice and soil. Subsequently, a pot experiment was performed in the greenhouse via treating the soil samples with 12 different concentrations of selenium and heavy metals, and the contents of selenium and cadmium in rice grain were confirmed to be significantly associated. Moreover, transcriptome analysis revealed that the up-regulation of transporter-coding may promote the absorption of selenium and cadmium. The expression of antioxidant-coding genes and cadmium chelator transporter coding-genes was up-regulated to reduce the toxicity of cadmium. Meanwhile, the up-regulation of key genes of the ascorbic acid-glutathione metabolic pathway were responsible for the association between selenium and cadmium in Se-rich rice. Our work suggested the correlation between selenium and cadmium accumulation in selenium-rich rice, clarified their accumulation mechanism, provides a direction for the scientific production of selenium-rich agro-foods.


Asunto(s)
Oryza , Selenio , Contaminantes del Suelo , Cadmio/análisis , Perfilación de la Expresión Génica , Humanos , Oryza/metabolismo , Selenio/análisis , Suelo , Contaminantes del Suelo/análisis
20.
Arch Insect Biochem Physiol ; 108(3): e21845, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34605064

RESUMEN

With the wide cultivation of transgenic plants throughout the world and the rising risk of resistance to Bacillus thuringiensis crystal (Cry) toxins, it is essential to design an adaptive resistance management strategy for continued use. Neuropeptide F (NPF) of insects has proven to be valuable for the production of novel-type transgenic plants via its important role in the control of feeding behavior. In this study, the gene encoding NPF was cloned from the diamondback moth, Plutella xylostella, an important agricultural pest. Real-time quantitative reverse transcription-polymerase chain reaction and in situ hybridization showed a relatively high expression of P. xylostella-npf (P. x-npf) in endocrine cells of the midgut of fourth instar larvae, and it was found to participate in P. xylostella feeding behavior and Cry1Ac-induced feeding inhibition. Prokaryotic expression and purification provided structure unfolded P. x-npf from inclusion bodies for diet surface overlay bioassays and the results demonstrated a significant synergistic effect of P. x-npf on Cry1Ac toxicity by increasing intake of noxious food which contains Cry toxins, especially quick death at an early stage of feeding. Our findings provided a potential new way to efficiently control pests by increasing intake of lower dose Cry toxins and a novel hint for the complex Cry toxin mechanism.


Asunto(s)
Toxinas de Bacillus thuringiensis , Endotoxinas , Proteínas Hemolisinas , Mariposas Nocturnas , Neuropéptidos , Animales , Toxinas de Bacillus thuringiensis/farmacología , Endotoxinas/farmacología , Conducta Alimentaria/fisiología , Expresión Génica , Genes de Insecto , Proteínas Hemolisinas/farmacología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/farmacología , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Mariposas Nocturnas/fisiología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Neuropéptidos/farmacología , Control de Plagas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA