Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Comput Math Methods Med ; 2022: 2656480, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36110576

RESUMEN

Background: Biglycan (BGN) is a family member of small leucine-rich repeat proteoglycans. High expression of BGN might enhance the invasion and metastasis in some types of tumors. Here, the prognostic significance of BGN was evaluated in gastric cancer. Material and Methods. Two independent Gene Expression Omnibus (GEO) gastric cancer microarray datasets (n = 64 and n = 432) were collected for this study. Kaplan-Meier analysis was applied to evaluate if BGN impacts the outcomes of gastric cancer. Protein-protein interaction (PPI) analysis was performed on gastric cancer-related genes and BGN targets, and those interactions with confidence interval (CI) ≥ 0.7 were chosen to construct a PPI network. The gene set enrichment analysis (GSEA) was used to explore BGN and cancer-related gene signatures. Gene Transcription Regulation Database (GTRD) and ALGGEN-PROMO predicted the transcription factor binding sites (TFBSs) of the BGN promoter. BGN protein level in gastric cancer tissue was determined by immunohistochemistry (IHC). Bioinformatic analysis predicted the putative TFs of BGN. Results: For gastric cancer, the mRNA expression level of BGN in tumor tissue was significantly higher than that in normal tissue. Kaplan-Meier analysis showed that higher expression of BGN mRNA was significantly associated with more reduced recurrence-free survival (RFS). GSEA results suggested that BGN was significantly enriched in gene signatures related to metastasis and poor prognosis, revealing that BGN might be associated with cell proliferation, poor differentiation, and high invasiveness of gastric cancer. Meanwhile, the putative TFs, including AR, E2F1, and TCF4, were predicted by bioinformatic analysis and also significantly correlated with expression of BGN in mRNA levels. Conclusion: High expression of BGN mRNA was significantly related to poor prognosis, which suggested that BGN was a potential prognostic biomarker and therapeutic target of gastric cancer.


Asunto(s)
Neoplasias Gástricas , Biglicano/genética , Biglicano/metabolismo , Biomarcadores , Humanos , Pronóstico , ARN Mensajero/metabolismo , Neoplasias Gástricas/metabolismo , Factores de Transcripción
2.
Pancreatology ; 22(3): 401-413, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35300916

RESUMEN

BACKGROUND/OBJECTIVES: Ribonucleotide Reductase M2 subunit (RRM2) is elevated in pancreatic cancer and involved in DNA synthesis and cell proliferation. But its specific mechanism including genetic differences and upstream regulatory pathways remains unclear. METHODS: We analyzed RRM2 expression of 178 pancreatic cancer patients in Gene Expression Profiling Interactive Analysis (GEPIA) database. Besides, more pancreatic cancer specimens were collected and detected RRM2 expression by immunohistochemistry. RRM2 knockdown by shRNA was applied for functional and mechanism analysis in vitro. Xenograft tumor growth was significantly slower by RRM2 silencing in vivo. RESULTS: It showed that high RRM2 expression had a poorer overall survival and disease free survival. RRM2 expression was higher in tumor grade 2 and 3 than grade 1. Immunohistochemistry data validated that high RRM2 expression predicted worse survival. RRM2 knockdown significantly reduced cell proliferation, inhibited colony formation and suppressed cell cycle progress. Further mechanism assay showed silencing RRM2 lead to inactivation of PI3K/AKT/mTOR pathway and inhibition of mutant p53, which induce S phase arrest and/or apoptosis. In panc-1 cells, S-phase arrest mediated by mutant p53 inhibition, p21 increase and cell cycle related proteins change. While in miapaca-2 cells, induction of apoptosis and S-phase arrest mediated by CDK1 played a coordinated role. CONCLUSION: Taken together, high RRM2 expression was associated with worse prognosis. Importantly, RRM2 knockdown deactivated PI3K/AKT/mTOR pathway, resulting in cell cycle arrest and/or apoptosis. This study shed light on the molecular mechanism of RRM2 in pancreatic tumor progression and is expected to provide a new theoretical basis for pancreatic cancer treatment.


Asunto(s)
Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas c-akt , Carcinogénesis , Línea Celular Tumoral , Proliferación Celular/genética , Transformación Celular Neoplásica , Humanos , Neoplasias Pancreáticas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Ribonucleósido Difosfato Reductasa , Serina-Treonina Quinasas TOR , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias Pancreáticas
3.
Transl Oncol ; 14(1): 100901, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33091827

RESUMEN

Adjuvant chemotherapy(AC) plays a substantial role in the treatment of locally advanced gastric cancer (LAGC), but the response remains poor. We aims to improve its efficacy in LAGC. Therefore, we identified the expression of eight genes closely associated with platinum and fluorouracil metabolism (RRM1, RRM2, RRM2B, POLH, DUT, TYMS, TYMP, MKI67) in the discovery cohort (N=291). And we further validated the findings in TCGA (N=279) and GEO. Overall survival (OS) was used as an endpoint. Univariate and multivariate Cox models were applied. A multivariate Cox regression model was simulated to predict the OS. In the discovery cohort, the univariate Cox model indicated that AC was beneficial to high-RRM1, high-DUT, low-RRM2, low-RRM2B, low-POLH, low-KI67, low-TYMS or low-TYMP patients, the results were validated in the TCGA cohort. The multivariate Cox model showed consistent results. Cumulative analysis indicated that patients with low C-Score respond poorly to the AC, whereas the high and medium C-Score patients significantly benefit from AC. A risk model based on the above variables successfully predicted the OS in both cohorts (AUC=0.75 and 0.67, respectively). Further validation in a panel of gastric cancer cell (GC) lines (N=37) indicated that C-Score is significantly associated with IC50 value to fluorouracil. Mutation profiling showed that C-Score was associated with the number and types of mutations. In conclusion, we successfully simulated a predictive signature for the efficacy of AC in LAGC patients and further explored the potential mechanisms. Our findings could promote precision medicine and improve the prognosis of LAGC patients.

4.
Cancer Lett ; 492: 185-196, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32758616

RESUMEN

Breast cancer is the most common cancer among women worldwide, with 70% being estrogen receptor-positive (ER+). Although ER-targeted treatment is effective in treating ER + breast cancer, chemoresistance and metastasis still prevail. Outcome-predictable biomarkers can help improve patient prognosis. Through the analysis of the Array Express database, The Cancer Genome Atlas-Breast Cancer datasets, and breast tumor tissue array results, we found that cytochrome c oxidase subunit 5a (COX5A) was related to poor prognosis of ER + breast cancer. Further studies revealed that COX5A was positively associated with metastasis and chemoresistance in ER + breast cancer. In vitro experiments showed that knockdown of COX5A was accompanied by a decrease in ERα expression, cell cycle arrest, and epithelial-mesenchymal transition blockade, resulting in an inhibition of proliferation and invasion. Knockdown of COX5A enhanced the chemosensitivity of breast cancer cells by decreasing adenosine triphosphate and increasing reactive oxygen species levels. We report that miR-204 can target and inhibit the expression of COX5A, thus, reversing the functions of COX5A in ER + breast cancer cells. We found that COX5A may serve as a prognostic biomarker in ER + breast cancer.


Asunto(s)
Neoplasias de la Mama/patología , Complejo IV de Transporte de Electrones/fisiología , MicroARNs/fisiología , Receptores de Estrógenos/análisis , Adulto , Anciano , Neoplasias de la Mama/química , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Resistencia a Antineoplásicos , Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Complejo IV de Transporte de Electrones/genética , Transición Epitelial-Mesenquimal , Femenino , Humanos , Persona de Mediana Edad , Invasividad Neoplásica
5.
Mol Carcinog ; 59(8): 908-922, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32346924

RESUMEN

Kinesin family member 11 (KIF11) is a plus end-directed kinesin indispensable for the formation of the bipolar spindle in metaphase, where it objects to the action of minus end-directed molecular motors. Here, we hypothesize that KIF11 might be a therapeutic target of breast cancer and regulated by miR-30a. Cell Counting Kit 8 assays were used to investigate cell proliferation. Invasion assays were used to survey the motility of cells. Kaplan-Meier and Cox proportional analyses were employed for this outcome study. The prognostic significance and performance of KIF11 were validated on 17 worldwide independent microarray datasets and two The Cancer Genome Atlas-Breast Invasive Carcinoma sets. microRNA was predicted targeting KIF11 through sequence alignment in microRNA.org and confirmed by coexpression analysis in human breast cancer samples. Dual-luciferase reporter assays were employed to validate the interaction between miR-30a and KIF11 further. Higher KIF11 mRNA levels and lower miR-30a were significantly associated with poor survival of breast cancer patients. Inhibition of KIF11 by small-hairpin RNA significantly reduced the proliferation and invasion capabilities of the breast cancer cells. Meanwhile, downregulation of KIF11 could enhance the cytotoxicity of adriamycin in breast cancer cell lines MCF-7 and MDA-MB-231. A population study also validated that chemotherapy and radiotherapy significantly improved survival in early-stage breast cancer patients with low KIF11 expression levels. Further bioinformatics analysis demonstrated that miR-30a could interact with KIF11 and validated by dual-luciferase reporter assays. Therefore, KIF11 is a potential therapeutic target of breast cancer. miR-30a could specifically interact with KIF11 and suppress its expression in breast cancer.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Cinesinas/metabolismo , MicroARNs/genética , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Cinesinas/antagonistas & inhibidores , Cinesinas/genética , ARN Interferente Pequeño/genética , Células Tumorales Cultivadas
6.
J Cancer ; 11(7): 1846-1858, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194796

RESUMEN

Purpose: DDX39 is a DEAD-box RNA helicase that unwinds double-stranded RNA in an ATP-dependent manner. This study evaluated the prognostic and predictive significance of DDX39 in breast cancer (BC). Methods: The cellular proliferation, invasion, and drug cytotoxicity by DDX39 siRNA were evaluated in MCF7 (ER-positive) and MDA-MB-231 (ER-negative) cell lines. A total of 27 datasets (total 8110 accessible cases) with following-up information were collected from Asia, Europe, and North America to explore associations between DDX39 gene expression and clinical parameters of BC patients. Results: Down-regulation of DDX39 by siRNA significantly reduce the cell growth and invasion ability in MCF7 cells, but only slightly in MDA-MB-231 cells. The DDX39 mRNA level was elevated in breast adenocarcinoma compared with normal breast tissue (p<0.01). Higher DDX39 level was significantly correlated with larger tumor size (p<0.01) and poorer tumor differentiation (p<0.01). The prognostic significance of DDX39 for BC was assessed by pooled-analysis and meta-analysis. Kaplan-Meier analysis demonstrated that increased DDX39 mRNA expression was associated with poor outcomes significantly in a dose-dependent manner in ER-positive BC. The prognostic performance of DDX39 mRNA was comparable to 21-gene, 70-gene, and wound-response gene signatures, and it was superior to the TNM stage. Lower DDX39 expression was associated with reduced relative risk death on ER-positive BC with chemotherapy or radiotherapy. Inhibition of DDX39 by siRNA could significantly enhance the sensitivity of MCF-7 to doxorubicin. Conclusion: DDX39 may be a potential novel prognostic and predictive biomarker for BC patients with ER-positive status.

7.
Am J Cancer Res ; 9(8): 1650-1663, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31497348

RESUMEN

Liver kinase B1 (LKB1), a serine/threonine kinase, is frequently inactivated in several types of human cancers. To date, inactivation of LKB1 tumor suppressor has rarely been reported in glioblastoma. In this study, we investigated LKB1 status, biological significance, and therapeutic implications in glioblastoma. Loss of LKB1 immunostaining was identified in 8.6% (5/58), while decrease of LKB1 immunostaining was found in 29.3% (17/58) of glioblastoma tissues. Notably, mining TCGA database of LKB1 expression in glioblastoma revealed that lower mRNA level of LKB1 was associated with shorter survival in glioblastoma. We found that knockdown of LKB1 significantly promoted in vitro proliferation, adhesion, invasion, and metformin-induced apoptosis, and simultaneously enhanced activation of ERK and mammalian-target of rapamycin (mTOR) signaling pathways in LKB1-compenent U87 and T98 glioblastoma cells. Moreover, global transcriptional profiling revealed that adhesion and cytoskeletal proteins such as Vinculin, Talin and signaling pathways including focal adhesion kinase (FAK), extracellular martrix (ECM) receptor interaction, and cellular motility were significantly enriched in U87 and T98 glioblastoma cells upon LKB1 knockdown. Additionally, we demonstrated that the enhanced activation of FAK by LKB1 knockdown was dependent on differentially expressed cytoskeletal proteins in these glioblastoma cells. Importantly, we further found that mTOR1 inhibitor rapamycin dominantly inhibited in vitro cellular proliferation, while FAK inhibitor PF-573288 drastically decreased invasion of LKB1-attenuated glioblastoma cells. Therefore, downregulation of LKB1 may contribute to the pathogenesis and malignancy of glioblastoma and may have potential implications for stratification and treatment of glioblastoma patients.

8.
J Oncol ; 2019: 2316237, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31073307

RESUMEN

PURPOSE: This study aims to evaluate the prognostic value of human Mitotic Centromere-Associated Kinesin (MCAK), a microtubule-dependent molecular motor, in breast cancers. The posttranscriptional regulation of MCAK by microRNAs will also be explored. METHODS: The large-scale gene expression datasets of breast cancer (total n=4,677) were obtained from GEO, NKI, and TCGA database. Kaplan-Meier and Cox analyses were used for survival analysis. MicroRNAs targeting MCAK were predicted by bioinformatic analysis and validated by a dual-luciferase reporter assay. RESULTS: The expression of MCAK was significantly associated with aggressive features of breast cancer, including tumor stage, Elston grade, and molecular subtypes, for global gene expression datasets of breast cancer (p<0.05). Overexpression of MCAK was significantly associated with poor outcome in a dose-dependent manner for either ER-positive or ER-negative breast cancer. Evidence from bioinformatic prediction, coexpression assays, and gene set enrichment analyses suggested that miR-485-5p and miR-181c might target MCAK and suppress its expression. A 3'UTR dual-luciferase target reporter assay demonstrated that miR-485-5p and miR-181c mimics specifically inhibited relative Firefly/Renilla luciferase activity by about 50% in corresponding reporter plasmids. Further survival analysis also revealed that miR-485-5p (HR=0.59, 95% CI 0.37-0.92) and miR-181c (HR=0.54, 95% CI 0.34-0.84) played opposite roles of MCAK (HR=2.80, 95% CI 1.77-4.57) and were significantly associated with better outcome in breast cancers. CONCLUSION: MCAK could serve as a prognostic biomarker for breast cancers. miR-485-5p and miR-181c could specifically target and suppress the MCAK gene expression in breast cancer cells.

9.
Biomed Pharmacother ; 112: 108590, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30784913

RESUMEN

BACKGROUND: Etoposide-induced gene 24 (EI24) is an induction target of TP53-mediated apoptosis in human cancer cells. The hypothesis of this study is that EI24 might be a prognostic biomarker of non-small cell lung carcinoma (NSCLC). MATERIAL AND METHODS: Fourteen gene expression NSCLC datasets with follow-up information (a total of 2582 accessible cases) were collected from Asia, Europe and North America. The Kaplan-Meier and Cox analyses were applied to evaluate the relation between EI24 and the outcomes of NSCLC. A gene set enrichment analysis (GSEA) was used to explore EI24 and cancer-related gene signatures. RESULTS: EI24 was significantly upregulated in mutated TP53 NSCLC samples and significantly downregulated with the increase in the TP53 expression level in NSCLC. GSEA results suggested that EI24 significantly enriched metastasis and poor prognosis gene signatures. Meanwhile, EI24 was significantly upregulated in lung adenocarcinoma compared with normal lungs (p < 0.01). It was also highly expressed in the later TNM stages and the ALK fusion+, higher MYC gene copy and EGFR wild type subgroups (p < 0.05). The Kaplan-Meier analysis demonstrated that the expression of EI24 was significantly associated with poor overall survival and disease-free survival in a dose-dependent manner in GSE31210 dataset. The C-index of Cox model with EI24 is 0.70, that is better than that with MYC (0.51), KRAS (0.51) and EGFR (0.59), which indicates better prognostic performance of EI24. The prognostic significance of EI24 for overall survival of NSCLC was validated by pooled and meta-analysis on 14 datasets. The stratification analysis revealed that EI24 prognosticated poor overall survival (HR = 3.37, 95% CI = 1.39-9.62, p < 0.05) in the TP53 wild type subgroup, but not in the mutated TP53 NSCLC subgroup. Moreover, YY1 might transcriptionally regulate EI24 in a positive manner. CONCLUSION: EI24 is a potential prognostic biomarker and impacts poor outcome in NSCLC. The prognostic significance of EI24 might rely on TP53 status.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Proteínas Nucleares/genética , Proteína p53 Supresora de Tumor/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Proteínas Reguladoras de la Apoptosis/biosíntesis , Biomarcadores de Tumor/biosíntesis , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Biología Computacional/métodos , Análisis de Datos , Bases de Datos Genéticas/tendencias , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Persona de Mediana Edad , Proteínas Nucleares/biosíntesis , Pronóstico , Proteína p53 Supresora de Tumor/biosíntesis , Adulto Joven
10.
Oncol Lett ; 17(2): 1865-1876, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30675249

RESUMEN

Abnormal spindle-like microcephaly-associated (ASPM) protein is essential for mitotic spindle function during cell replication. The present study aimed to evaluate the hypothesis that ASPM serves a critical role in cancer invasiveness and may act as a prognostic biomarker in bladder cancer. In total, 6 independent worldwide bladder cancer microarray mRNA expression datasets (n=1,355) with clinical and follow-up annotations were collected from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Reverse transcription-quantitative polymerase chain reaction analysis revealed that ASPM mRNA expression was higher in bladder cancer tissue compared with adjacent normal bladder mucosae in 10 paired human tissue samples (P=0.004). ASPM overexpression in human bladder cancer samples was consistent with the mRNA expression datasets from GEO and TCGA. Bioinformatics analysis indicated that ASPM mRNA expression was significantly associated with grade and tumor node metastasis (TNM) stage in bladder cancer, based on pooled GEO and TCGA datasets (P<0.05). Stratification analysis indicated that the clinical significance of ASPM was particularly pronounced in low-grade or papillary subtypes of bladder cancer. Individual Cox and pooled Kaplan-Meier analyses suggested that ASPM expression was significantly directly correlated with poor overall (OS) and progression-free survival (PFS) in bladder cancer. Multivariate and stratification analyses demonstrated that the prognostic significance of ASPM was evident in low-grade or papillary bladder cancers, yet not in high-grade or non-papillary subgroups. Increased expression of ASPM was associated with poor OS in muscle-invasive bladder cancer and with poor PFS in non-muscle-invasive bladder cancer (P<0.05). Bioinformatics analysis identified the top 11 ASPM-related genes on STRING-DB.org. The expression of the majority of these genes was associated with poor outcomes of bladder cancer with statistical significance. Gene set enrichment analysis indicated that the high expression of ASPM could enrich gene signatures involved in mitosis, differentiation and metastasis in bladder cancer. Further analysis of TCGA datasets indicated that increased ASPM expression was significantly associated with higher Gleason score, T stage, N stage and poor clinical outcome in prostate cancer. It was also significantly associated with late TNM stage and poor PFS in renal cell carcinoma. In summary, ASPM may serve as a novel prognostic biomarker for low-grade or papillary bladder cancer.

11.
Gut ; 68(6): 1024-1033, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-29954840

RESUMEN

OBJECTIVES: Patients with gallbladder carcinoma (GBC) lack effective treatment methods largely due to the inadequacy of both molecular characterisation and potential therapeutic targets. We previously uncovered a spectrum of genomic alterations and identified recurrent mutations in the ErbB pathway in GBC. Here, we aimed to study recurrent mutations of genes and pathways in a larger cohort of patients with GBC and investigate the potential mechanisms and clinical significance of these mutations. DESIGN: We performed whole-exome sequencing (WES) in 157 patients with GBC. Functional experiments were applied in GBC cell lines to explore the oncogenic roles of ERBB2/ERBB3 hotspot mutations, their correlation with PD-L1 expression and the underlying mechanisms. ERBB inhibitors and a PD-L1 blocker were used to evaluate the anticancer activities in co-culture systems in vitro and in vivo. RESULTS: WES identified ERBB2 and ERBB3 mutations at a frequency of 7%-8% in the expanded cohort, and patients with ERBB2/ERBB3 mutations exhibited poorer prognoses. A set of in vitro and in vivo experiments revealed increased proliferation/migration on ERBB2/ERBB3 mutation. Ectopic expression of ERBB2/ERBB3 mutants upregulated PD-L1 expression in GBC cells, effectively suppressed normal T-cell-mediated cytotoxicity in vitro through activation of the PI3K/Akt signalling pathway and contributed to the growth and progression of GBC in vivo. Treatment with an ERBB2/ERBB3 inhibitor or a PD-L1 monoclonal antibody reversed these immunosuppressive effects, and combined therapy revealed promising therapeutic activities. CONCLUSIONS: ERBB2/ERBB3 mutations may serve as useful biomarkers in identifying patients who are sensitive to ERBB2/ERBB3 inhibitors and PD-L1 monoclonal antibody treatment. TRIAL REGISTRATION NUMBER: NCT02442414;Pre-results.


Asunto(s)
Antígeno B7-H1/genética , Secuenciación del Exoma , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/inmunología , Receptor ErbB-2/genética , Anticuerpos Monoclonales/farmacología , Antígeno B7-H1/efectos de los fármacos , Línea Celular Tumoral , Análisis Mutacional de ADN , Femenino , Genómica , Humanos , Masculino , Terapia Molecular Dirigida , Medición de Riesgo , Sensibilidad y Especificidad , Transducción de Señal/efectos de los fármacos
12.
Oncogene ; 38(8): 1269-1281, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30254209

RESUMEN

Karyopherin alpha 2 (KPNA2) is a nuclear import factor that is elevated in multiple cancers. However, its molecular regulation at the transcriptional levels is poorly understood. Here we found that KPNA2 was significantly upregulated in gallbladder cancer (GBC), and the increased levels were correlated with short survival of patients. Gene knocking down of KPNA2 inhibited tumor cell proliferation and migration in vitro as well as xenografted tumor development in vivo. A typical transcription factor E2F1 associated with its DNA-binding partner DP1 bond to the promoter region of KPNA2 and induced KPNA2 expression. In contrast, an atypical transcription factor E2F7 competed against DP1 and blocked E2F1-induced KPNA2 gene activation. Mutation of the dimerization residues of E2F7 or DNA-binding domain of E2F1 abolished the suppressive effects of E2F7 on KPNA2 gene expression. In addition, KPNA2 mediated nuclear localization of E2F1 and E2F7, where they in turn controlled KPNA2 expression. Taken together, our data provided mechanistic insights into divergently transcriptional regulation of KPNA2, thus pointing to KPNA2 as a potential target for cancer therapy.


Asunto(s)
Factor de Transcripción E2F1/genética , Factor de Transcripción E2F7/genética , Neoplasias de la Vesícula Biliar/genética , alfa Carioferinas/genética , Adulto , Anciano , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas de Unión al ADN/genética , Femenino , Neoplasias de la Vesícula Biliar/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Persona de Mediana Edad , Estadificación de Neoplasias , Factor de Transcripción DP1/genética , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Onco Targets Ther ; 11: 4755-4768, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30127624

RESUMEN

PURPOSE: The aim of this study was to investigate the diagnostic and prognostic value of human kinesin family member 4A (KIF4A) as an effective biomarker for breast cancer. MATERIALS AND METHODS: Cancer Genome Atlas data and 12 independent public breast cancer microarray data sets were downloaded and analyzed using individual and pooled approaches. RESULTS: The results of our study revealed a strong and positive correlation between KIF4A expression and malignant features of breast cancer. KIF4A had a strong prognostic value in both ER-positive and ER-negative breast cancers comparable to or even better than tumor size, lymph node invasion, and Elston grade. We also found that KIF4A might be the target gene of microRNA-335, which can suppress KIF4A expression by targeting the 3'-untranslated region of its mRNA. CONCLUSION: KIF4A might serve as a robust prognostic predictor for breast cancer. Targeting KIF4A activity could be a promising therapeutic option in breast cancer treatment.

14.
Cell Death Dis ; 9(2): 182, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29416013

RESUMEN

Gallbladder cancer (GBC) is the most common malignant tumour of the biliary track system. Angiogenesis plays a pivotal role in the development and progression of malignant tumours. miR-143-3p acts as a tumour suppressor in various cancers. Their role in GBC is however less well defined. Here we show that the expression levels of miR-143-3p were decreased in human GBC tissues compared with the non-tumour adjacent tissue (NAT) counterparts and were closely associated with overall survival. We discovered that miR-143-3p was a novel inhibitor of tumour growth and angiogenesis in vivo and in vitro. Our antibody array, ELISA and PLGF rescue analyses indicated that PLGF played an essential role in the antiangiogenic effect of miR-143-3p. Furthermore, we used miRNA target-prediction software and dual-luciferase assays to confirm that integrin α6 (ITGA6) acted as a direct target of miR-143-3p. Our ELISA and western blot analyses confirmed that the expression of PLGF was decreased via the ITGA6/PI3K/AKT pathway. In conclusion, miR-143-3p suppresses tumour angiogenesis and growth of GBC through the ITGA6/PI3K/AKT/PLGF pathways and may be a novel molecular therapeutic target for GBC.


Asunto(s)
Neoplasias de la Vesícula Biliar/genética , Integrina alfa6/metabolismo , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Factor de Crecimiento Placentario/biosíntesis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/fisiología , Regulación hacia Abajo , Neoplasias de la Vesícula Biliar/irrigación sanguínea , Neoplasias de la Vesícula Biliar/metabolismo , Neoplasias de la Vesícula Biliar/patología , Xenoinjertos , Humanos , Integrina alfa6/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Factor de Crecimiento Placentario/genética , Transfección
15.
Am J Transl Res ; 10(11): 3635-3649, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30662615

RESUMEN

Ribonucleotide reductase small subunit M2B (RRM2B) plays an essential role in maintaining mitochondrial homeostasis. Mitochondrial permeability transition pore (MPTP) is a key regulator of mitochondrial homeostasis. MPTP contributes to cell death and is crucial in cancer progression. RRM2B's relation to MPTP is not well known, and the role of RRM2B in cancer progression is controversial. Here, our aim was to study the role of RRM2B in regulating MPTP and the association between RRM2B and clinicopathological manifestations in breast cancer. Analysis of Rrm2b-/- mice cells found changes consistent with MPTP opening, including mitochondrial swelling and upregulation of cyclophilin D (CypD), a protein that activates MPTP opening. Silencing of RRM2B gene expression in MCF7 and KB cell lines led to MPTP opening. Accordingly, dysfunctional oxidative phosphorylation and elevated superoxide levels were also detected in RRM2B-silenced MCF7 and KB cell lines, which was consistent with the findings by gene set enrichment analysis of 159 breast cancer cases that genes involving respiratory electron transport were enriched in high-RRM2B breast cancer, and genes involving biologic oxidation were enriched in low-RRM2B breast cancers. A metabolomic study revealed that spermine levels in RRM2B-silenced MCF7 and KB cells were only 5% and 8% of control levels, respectively. Addition of exogenous spermine to RRM2B-silenced MCF7 and KB cells was able to reverse the MPTP opening induced by RRM2B deficiency. These results suggest that RRM2B may induce MPTP opening through reducing spermine levels. Immunohistochemical analysis of 148 breast cancer cases showed that RRM2B and CypD protein levels were inversely correlated in breast cancer specimens (P<0.05), so were their associated clinicopathologic parameters that high-level RRM2B expression was associated with better clinicopathological features. We conclude that RRM2B deficiency leads to MPTP opening mediated by spermine. Coupling of low RRM2B and high CypD expression is associated with aggressive manifestations of breast cancer.

16.
J Breast Cancer ; 20(2): 132-141, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28690649

RESUMEN

PURPOSE: Uridine-cytidine kinase (UCK) 2 is a rate-limiting enzyme involved in the salvage pathway of pyrimidine-nucleotide biosynthesis. Recent studies have shown that UCK2 is overexpressed in many types of cancer and may play a crucial role in activating antitumor prodrugs in human cancer cells. In the current study, we evaluated the potential prognostic value of UCK2 in breast cancer. METHODS: We searched public databases to explore associations between UCK2 gene expression and clinical parameters in patients with breast cancer. Gene set enrichment analysis (GSEA) was performed to identify biological pathways associated with UCK2 gene expression levels. Survival analyses were performed using 10 independent large-scale breast cancer microarray datasets. RESULTS: We found that UCK2 mRNA expression was elevated in breast cancer tissue compared with adjacent nontumorous tissue or breast tissue from healthy controls. High UCK2 levels were correlated with estrogen receptor negativity (p<0.001), advanced tumor grade (p<0.001), and poor tumor differentiation (p<0.001). GSEA revealed that UCK2-high breast cancers were enriched for gene sets associated with metastasis, progenitor-like phenotypes, and poor prognosis. Multivariable Cox proportional hazards regression analyses of microarray datasets verified that high UCK2 gene expression was associated with poor overall survival in a dose-response manner. The prognostic power of UCK2 was superior to that of TNM staging and comparable to that of multiple gene signatures. CONCLUSION: These findings suggest that UCK2 may be a promising prognostic biomarker for patients with breast cancer.

17.
Carcinogenesis ; 38(5): 519-531, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28379297

RESUMEN

Human mitochondrial pyrroline-5-carboxylate reductase (PYCR) is a house-keeping enzyme that catalyzes the reduction of Δ1-pyrroline-5-carboxylate to proline. This enzymatic cycle plays pivotal roles in amino acid metabolism, intracellular redox potential and mitochondrial integrity. Here, we hypothesize that PYCR1 might be a novel prognostic biomarker and therapeutic target for breast cancer. In this study, breast cancer tissue samples were obtained from Zhejiang University (ZJU set). Immunohistochemistry analysis was performed to detect the protein level of PYCR1, and Kaplan-Meier and Cox proportional analyses were employed in this outcome study. The prognostic significance and performance of PYCR1 mRNA were validated on 13 worldwide independent microarray data sets, composed of 2500 assessable breast cancer cases. Our findings revealed that both PYCR1 mRNA and protein expression were significantly associated with tumor size, grade and invasive molecular subtypes of breast cancers. Independent and pooled analyses verified that higher PYCR1 mRNA levels were significantly associated with poor survival of breast cancer patients, regardless of estrogen receptor (ER) status. For in vitro studies, inhibition of PYCR1 by small-hairpin RNA significantly reduced the growth and invasion capabilities of the cells, while enhancing the cytotoxicity of doxorubicin in breast cancer cell lines MCF-7 (ER positive) and MDA-MB-231 (ER negative). Further population study also validated that chemotherapy significantly improved survival in early-stage breast cancer patients with low PYCR1 expression levels. Therefore, PYCR1 might serve as a prognostic biomaker for either ER-positive or ER-negative breast cancer subtypes and can also be a potential target for breast cancer therapy.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Mitocondrias/genética , Pirrolina Carboxilato Reductasas/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/mortalidad , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/genética , Análisis por Conglomerados , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Mitocondrias/metabolismo , Clasificación del Tumor , Invasividad Neoplásica , Fenotipo , Pronóstico , Pirrolina Carboxilato Reductasas/metabolismo , Receptores de Estrógenos/metabolismo , delta-1-Pirrolina-5-Carboxilato Reductasa
18.
Mol Cancer ; 16(1): 20, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28137278

RESUMEN

BACKGROUND: Colorectal cancer remains one of the most common malignant tumors worldwide. Colorectal cancer initiating cells (CCICs) are a small subpopulation responsible for malignant behaviors of colorectal cancer. Aberrant activation of the Wnt pathways regulates the self-renewal of CCIC. However, the underlying mechanism(s) remain poorly understood. METHODS: Via retroviral library screening, we identified Nuclear Receptor-Interacting Protein 2 (NRIP2) as a novel interactor of the Wnt pathway from enriched colorectal cancer colosphere cells. The expression levels of NRIP2 and retinoic acid-related orphan receptor ß (RORß) were further examined by FISH, qRT-PCR, IHC and Western blot. NRIP2 overexpressed and knockdown colorectal cancer cells were produced to study the role of NRIP2 in Wnt pathway. We also verified the binding between NRIP2 and RORß and investigated the effect of RORß on CCICs both in vitro and in vivo. Genechip-scanning speculated downstream target HBP1. Western blot, ChIP and luciferase reporter were carried to investigate the interaction between NRIP2, RORß, and HBP1. RESULTS: NRIP2 was significantly up-regulated in CCICs from both cell lines and primary colorectal cancer tissues. Reinforced expression of NRIP2 increased Wnt activity, while silencing of NRIP2 attenuated Wnt activity. The transcription factor RORß was a key target through which NRIP2 regulated Wnt pathway activity. RORß was a transcriptional enhancer of inhibitor HBP1 of the Wnt pathway. NRIP2 prevented RORß to bind with downstream HBP1 promoter regions and reduced the transcription of HBP1. This, in turn, attenuated the HBP1-dependent inhibition of TCF4-mediated transcription. CONCLUSIONS: NRIP2 is a novel interactor of the Wnt pathway in colorectal cancer initiating cells. interactions between NRIP2, RORß, and HBP1 mediate a new mechanism for CCIC self-renewal via the Wnt activity.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Proteínas de Unión al ADN/genética , Proteínas del Grupo de Alta Movilidad/genética , Células Madre Neoplásicas/metabolismo , Proteínas del Tejido Nervioso/genética , Miembro 2 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Proteínas Represoras/genética , Regulación hacia Arriba , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HT29 , Proteínas del Grupo de Alta Movilidad/metabolismo , Humanos , Ratones , Trasplante de Neoplasias , Proteínas del Tejido Nervioso/metabolismo , Miembro 2 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Represoras/metabolismo , Vía de Señalización Wnt
19.
Pancreas ; 45(10): 1485-1493, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27748721

RESUMEN

OBJECTIVES: There is a need for validated predictive markers of gemcitabine response to guide precision medicine treatment in pancreatic cancer. We previously validated human equilibrative nucleoside transporter 1 as a predictive marker of gemcitabine treatment response using Radiation Therapy Oncology Group 9704. Controversy exists about the predictive value of gemcitabine metabolism pathway biomarkers: deoxycytidine kinase (DCK), ribonucleotide reductase 1 (RRM1), RRM2, and p53R2. METHODS: Radiation Therapy Oncology Group 9704 prospectively randomized 538 patients after pancreatic resection to receive either 5-fluorouracil or gemcitabine. Tumor DCK, RRM1, RRM2, and p53R protein expressions were analyzed using a tissue microarray and immunohistochemistry and correlated with treatment outcome (overall survival and disease-free survival) by unconditional logistic regression analysis. RESULTS: There were 229 patients eligible for analysis from both the 5-fluorouracil and gemcitabine arms. Only RRM2 protein expression, and not DCK, RRM1, or p53R2 protein expression, was associated with survival in the gemcitabine treatment arm. CONCLUSIONS: Despite limited data from other nonrandomized treatment data, our data do not support the predictive value of DCK, RRM1, or p53R2. Efforts should focus on human equilibrative nucleoside transporter 1 and possibly RRM2 as valid predictive markers of the treatment response of gemcitabine in pancreatic cancer.


Asunto(s)
Neoplasias Pancreáticas , Antimetabolitos Antineoplásicos , Desoxicitidina/análogos & derivados , Tranportador Equilibrativo 1 de Nucleósido , Humanos , Medicina de Precisión , Proteínas Supresoras de Tumor , Gemcitabina
20.
Oncol Rep ; 36(5): 2489-2500, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27666119

RESUMEN

Mitochondrial serine hydroxylmethyltransferase 2 (SHMT2) is a key enzyme in the serine/glycine synthesis pathway. SHMT2 has been implicated as a critical component for tumor cell survival. The aim of the present study was to evaluate the prognostic value and efficiency of SHMT2 as a biomarker in patients with breast cancer. Individual and pooled survival analyses were performed on five independent breast cancer microarray datasets. Gene signatures enriched by SHMT2 were also analyzed in these datasets. SHMT2 protein expression was detected using immunohistochemistry (IHC) assay in 128 breast cancer cases. Gene set enrichment analysis revealed that SHMT2 was significantly associated with gene signatures of mitochondrial module, cancer invasion, metastasis and poor survival among breast cancer patients (p<0.05). The clinical relevance of SHMT2 was validated on IHC data. The mitochondrial localization of SHMT2 protein was visualized on IHC staining. Independent and pooled analysis confirmed that SHMT2 expression was associated with breast cancer tumor aggressiveness (TNM staging and Elson grade) in a dose-dependent manner (p<0.05). The prognostic performance of SHMT2 mRNA was comparable to other gene signatures and proved superior to TNM staging. Further analysis results indicated that SHMT2 had better prognostic value for estrogen receptor (ER)-negative breast cancer patients, compared to ER-positive patients. In cases involving stage IIb breast cancer, chemotherapy significantly extended survival time among patients with high SHMT2 expression. These results indicate that SHMT2 may be a valuable prognostic biomarker in ER-negative breast cancer cases. Furthermore, SHMT2 may be a potential target for breast cancer treatment and drug discovery.


Asunto(s)
Biomarcadores de Tumor/biosíntesis , Neoplasias de la Mama/genética , Glicina Hidroximetiltransferasa/biosíntesis , Pronóstico , Adulto , Anciano , Biomarcadores de Tumor/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Receptor alfa de Estrógeno/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Glicina Hidroximetiltransferasa/genética , Humanos , Persona de Mediana Edad , Mitocondrias/genética , Estadificación de Neoplasias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...