Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 603
Filtrar
1.
J Environ Manage ; 365: 121681, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38963966

RESUMEN

The denitrification process in aquaculture systems plays a crucial role in nitrogen (N) cycle and N budget estimation. Reliable models are needed to rapidly quantify denitrification rates and assess nitrogen losses. This study conducted a comparative analysis of denitrification rates in fish, crabs, and natural ponds in the Taihu region from March to November 2021, covering a complete aquaculture cycle. The results revealed that aquaculture ponds exhibited higher denitrification rates compared to natural ponds. Key variables influencing denitrification rates were Nitrate nitrogen (NO3--N), Suspended particles (SPS), and chlorophyll a (Chla). There was a significant positive correlation between SPS concentration and denitrification rates. However, we observed that the denitrification rate initially rose with increasing Chla concentration, followed by a subsequent decline. To develop parsimonious models for denitrification rates in aquaculture ponds, we constructed five different statistical models to predict denitrification rates, among which the improved quadratic polynomial regression model (SQPR) that incorporated the three key parameters accounted for 80.7% of the variability in denitrification rates. Additionally, a remote sensing model (RSM) utilizing SPS and Chla explained 43.8% of the variability. The RSM model is particularly valuable for rapid estimation in large regions where remote sensing data are the only available source. This study enhances the understanding of denitrification processes in aquaculture systems, introduces a new model for estimating denitrification in aquaculture ponds, and offers valuable insights for environmental management.

2.
Adv Sci (Weinh) ; : e2401695, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965802

RESUMEN

Helicobacter pylori (HP), a common microanaerobic bacteria that lives in the human mouth and stomach, is reported to infect ≈50% of the global population. The current diagnostic methods for HP are either invasive, time-consuming, or harmful. Therefore, a noninvasive and label-free HP diagnostic method needs to be developed urgently. Herein, reduced graphene oxide (rGO) is composited with different metal-based materials to construct a graphene-based electronic nose (e-nose), which exhibits excellent sensitivity and cross-reactive response to several gases in exhaled breath (EB). Principal component analysis (PCA) shows that four typical types of gases in EB can be well discriminated. Additionally, the potential of the e-nose in label-free detection of HP infection is demonstrated through the measurement and analysis of EB samples. Furthermore, a prototype of an e-nose device is designed and constructed for automatic EB detection and HP diagnosis. The accuracy of the prototype machine integrated with the graphene-based e-nose can reach 92% and 91% in the training and validation sets, respectively. These results demonstrate that the highly sensitive graphene-based e-nose has great potential for the label-free diagnosis of HP and may become a novel tool for non-invasive disease screening and diagnosis.

3.
Virol Sin ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969340

RESUMEN

A unique feature of coronaviruses is their utilization of self-encoded nonstructural protein 16 (nsp16), 2'-O-methyltransferase (2'-O-MTase), to cap their RNAs through ribose 2'-O-methylation modification. This process is crucial for maintaining viral genome stability, facilitating efficient translation, and enabling immune escape. Despite considerable advances in the ultrastructure of SARS-CoV-2 nsp16/nsp10, insights into its molecular mechanism have so far been limited. In this study, we systematically characterized the 2'-O-MTase activity of nsp16 in SARS-CoV-2, focusing on its dependence on nsp10 stimulation. We observed cross-reactivity between nsp16 and nsp10 in various coronaviruses due to a conserved interaction interface. However, a single residue substitution (K58T) in SARS-CoV-2 nsp10 restricted the functional activation of MERS-CoV nsp16. Furthermore, the cofactor nsp10 effectively enhanced the binding of nsp16 to the substrate RNA and the methyl donor S-adenosyl-L-methionine (SAM). Mechanistically, His-80, Lys-93, and Gly-94 of nsp10 interacted with Asp-102, Ser-105, and Asp-106 of nsp16, respectively, thereby effectively stabilizing the SAM binding pocket. Lys-43 of nsp10 interacted with Lys-38 and Gly-39 of nsp16 to dynamically regulate the RNA binding pocket and facilitate precise binding of RNA to the nsp16/nsp10 complex. By assessing the conformational epitopes of nsp16/nsp10 complex, we further determined the critical residues involved in 2'-O-MTase activity. Additionally, we utilize an in vitro biochemical platform to screen potential inhibitors targeting 2'-O-MTase activity. Overall, our results significantly enhance the understanding of viral 2'-O methylation process and mechanism, providing valuable targets for antiviral drug development.

4.
Sci China Life Sci ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38987431

RESUMEN

Winter plants rely on vernalization, a crucial process for adapting to cold conditions and ensuring successful reproduction. However, understanding the role of histone modifications in guiding the vernalization process in winter wheat remains limited. In this study, we investigated the transcriptome and chromatin dynamics in the shoot apex throughout the life cycle of winter wheat in the field. Two core histone modifications, H3K27me3 and H3K36me3, exhibited opposite patterns on the key vernalization gene VERNALIZATION1 (VRN1), correlating with its induction during cold exposure. Moreover, the H3K36me3 level remained high at VRN1 after cold exposure, which may maintain its active state. Mutations in FERTILIZATION-INDEPENDENT ENDOSPERM (TaFIE) and SET DOMAIN GROUP 8/EARLY FLOWERING IN SHORT DAYS (TaSDG8/TaEFS), components of the writer complex for H3K27me3 and H3K36me3, respectively, affected flowering time. Intriguingly, VRN1 lost its high expression after the cold exposure memory in the absence of H3K36me3. During embryo development, VRN1 was silenced with the removal of active histone modifications in both winter and spring wheat, with selective restoration of H3K27me3 in winter wheat. The mutant of Tafie-cr-87, a component of H3K27me3 "writer" complex, did not influence the silence of VRN1 during embryo development, but rather attenuated the cold exposure requirement of winter wheat. Integrating gene expression with H3K27me3 and H3K36me3 patterns identified potential regulators of flowering. This study unveils distinct roles of H3K27me3 and H3K36me3 in controlling vernalization response, maintenance, and resetting in winter wheat.

5.
Sci Rep ; 14(1): 14140, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898055

RESUMEN

Reservoir dispatching regulations are a crucial basis for reservoir operation, and using information extraction technology to extract entities and relationships from heterogeneous texts to form triples can provide structured knowledge support for professionals in making dispatch decisions and intelligent recommendations. Current information extraction technologies require manual data labeling, consuming a significant amount of time. As the number of dispatch rules increases, this method cannot meet the need for timely generation of dispatch plans during emergency flood control periods. Furthermore, utilizing natural language prompts to guide large language models in completing reservoir dispatch extraction tasks also presents challenges of cognitive load and instability in model output. Therefore, this paper proposes an entity and relationship extraction method for reservoir dispatch based on structured prompt language. Initially, a variety of labels are refined according to the extraction tasks, then organized and defined using the Backus-Naur Form (BNF) to create a structured format, thus better guiding large language models in the extraction work. Moreover, an AI agent based on this method has been developed to facilitate operation by dispatch professionals, allowing for the quick acquisition of structured data. Experimental verification has shown that, in the task of extracting entities and relationships for reservoir dispatch, this AI agent not only effectively reduces cognitive burden and the impact of instability in model output but also demonstrates high extraction performance (with F1 scores for extracting entities and relationships both above 80%), offering a new solution approach for knowledge extraction tasks in other water resource fields.

6.
Biomaterials ; 311: 122679, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38943823

RESUMEN

The widespread application of nanoparticles (NPs) in various fields has raised health concerns, especially in reproductive health. Our research has shown zinc oxide nanoparticles (ZnONPs) exhibit the most significant toxicity to pre-implantation embryos in mice compared to other common NPs. In patients undergoing assisted reproduction technology (ART), a significant negative correlation was observed between Zn concentration and clinical outcomes. Therefore, this study explores the impact of ZnONPs exposure on pre-implantation embryonic development and its underlying mechanisms. We revealed that both in vivo and in vitro exposure to ZnONPs impairs pre-implantation embryonic development. Moreover, ZnONPs were found to reduce the pluripotency of mouse embryonic stem cells (mESCs), as evidenced by teratoma and diploid chimera assays. Employing multi-omics approaches, including RNA-Seq, CUT&Tag, and ATAC-seq, the embryotoxicity mechanisms of ZnONPs were elucidated. The findings indicate that ZnONPs elevate H3K9me3 levels, leading to increased heterochromatin and consequent inhibition of gene expression related to development and pluripotency. Notably, Chaetocin, a H3K9me3 inhibitor, sucessfully reversed the embryotoxicity effects induced by ZnONPs. Additionally, the direct interaction between ZnONPs and H3K9me3 was verified through pull-down and immunoprecipitation assays. Collectively, these findings offer new insights into the epigenetic mechanisms of ZnONPs toxicity, enhancing our understanding of their impact on human reproductive health.

7.
Analyst ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860637

RESUMEN

Helicobacter pylori (H. pylori) is a globally widespread bacterial infection. Early diagnosis of this infection is vital for public and individual health. Prevalent diagnosis methods like the isotope 13C or 14C labelled urea breath test (UBT) are not convenient and may do harm to the human body. The use of cross-response gas sensor arrays (GSAs) is an alternative way for label-free detection of metabolite changes in exhaled breath (EB). However, conventional GSAs are complex to prepare, lack reliability, and fail to discriminate subtle changes in EB due to the use of numerous sensing elements and single dimensional signal. This work presents a dual-element multimodal GSA empowered with multimodal sensing signals including conductance (G), capacitance (C), and dissipation factor (DF) to improve the ability for gas recognition and H. pylori-infection diagnosis. Sensitized by poly(diallyldimethylammonium chloride) (PDDA) and the metal-organic framework material NH2-UiO66, the dual-element graphene oxide (GO)-composite GSAs exhibited a high specific surface area and abundant adsorption sites, resulting in high sensitivity, repeatability, and fast response/recovery speed in all three signals. The multimodal sensing signals with rich sensing features allowed the GSA to detect various physicochemical properties of gas analytes, such as charge transfer and polarization ability, enhancing the sensing capabilities for gas discrimination. The dual-element GSA could differentiate different typical standard gases and non-dehumidified EB samples, demonstrating the advantages in EB analysis. In a case-control clinical study on 52 clinical EB samples, the diagnosis model based on the multimodal GSA achieved an accuracy of 94.1%, a sensitivity of 100%, and a specificity of 90.9% for diagnosing H. pylori infection, offering a promising strategy for developing an accurate, non-invasive and label-free method for disease diagnosis.

8.
Ren Fail ; 46(1): 2353341, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38832502

RESUMEN

This systematic review aimed to statistically profile the medication burden and associated influencing factors, and outcomes in patients with dialysis-dependent chronic kidney disease (DD-CKD). Studies of medication burden in patients with DD-CKD in the last 10 years from 1 January 2013 to 31 March 2024 were searched from PubMed, Embase, and Cochrane databases. Newcastle-Ottawa Scale (NOS) or Agency for Healthcare Research and Quality (AHRQ) methodology checklist was used to evaluate quality and bias. Data extraction and combining from multiple groups of number (n), mean, and standard deviation (SD) were performed using R programming language (version4.3.1; R Core Team, Vienna, Austria). A total of 10 studies were included, and the results showed a higher drug burden in patients with DD-CKD. The combined pill burden was 14.57 ± 7.56 per day in hemodialysis (HD) patients and 14.63 ± 6.32 in peritoneal dialysis (PD) patients. The combined number of medications was 9.74 ± 3.37 in HD and 8 ± 3 in PD. Four studies described the various drug classes and their proportions, in general, antihypertensives and phosphate binders were the most commonly used drugs. Five studies mentioned factors associated with medication burden. A total of five studies mentioned medication burden-related outcomes, with one study finding that medication-related burden was associated with increased treatment burden, three studies finding that poor medication adherence was associated with medication burden, and another study finding that medication complexity was not associated with self-reported medication adherence. Limitations: meta-analysis was not possible due to the heterogeneity of studies.


Asunto(s)
Diálisis Renal , Insuficiencia Renal Crónica , Humanos , Insuficiencia Renal Crónica/terapia , Insuficiencia Renal Crónica/complicaciones , Diálisis Peritoneal , Cumplimiento de la Medicación/estadística & datos numéricos
9.
Clin Exp Nephrol ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709377

RESUMEN

OBJECTIVE: To investigate the predictors and establish a nomogram model for the prediction of the response to treatment in primary membranous nephropathy (PMN) with nephrotic syndrome (NS). METHODS: The clinical, laboratory, pathological and follow-up data of patients with biopsy-proven membranous nephropathy at the Affiliated Hospital of Qingdao University were collected. A total of 373 patients were randomly assigned into development group (n = 262) and validation group (n = 111). Logistic regression analysis was performed in the development group to determine the predictors of treatment response. A nomogram model was established based on the multivariate logistic regression analysis and validated in the validation group. The C-index and calibration plots were used for the evaluation of the discrimination and calibration performance, respectively. RESULTS: Serum albumin levels (OR = 1.151, 95% CI 1.078-1.229, P < 0.001) and glomerular C3 deposition (OR = 0.407, 95% CI 0.213-0.775, P = 0.004) were identified as independent predictive factors for treatment response in PMN with NS, then a nomogram was established combining the above indicators and treatment regimen. The C-indices of this model were 0.718 (95% CI 0.654-0.782) and 0.789 (95% CI 0.705-0.873) in the development and validation groups, respectively. The calibration plots showed that the predicted probabilities of the model were consistent with the actual probabilities (P > 0.05), which indicated favorable performance of this model in predicting the treatment response probability. CONCLUSIONS: Serum albumin levels and glomerular C3 deposition were predictors for treatment response of PMN with NS. A novel nomogram model with good discrimination and calibration was constructed to predict treatment response probability at an early stage.

10.
J Pharm Biomed Anal ; 246: 116219, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759325

RESUMEN

Qingwanzi Pills (QP) were first mentioned in the "Puji Fang" of the Ming Dynasty, with a history of approximately 600 years. The formula consisted of Gypsum Fibrosum and Indigo Naturalis. It is a famous classical formula with antipyretic effects frequently utilized in ancient China, although our knowledge about the overall antipyretic mechanism of QP remains limited. Therefore, we replicated the fever model in New Zealand rabbits induced by lipopolysaccharide, performed the pharmacodynamic evaluation of QP, identified the differential metabolites among QP groups, and performed pathway enrichment analysis to comparatively analyze the effects of QP on fever-related metabolic pathways by ultra-performance liquid chromatography-mass spectrometry. The results showed that the antipyretic effect of QP was superior to that of each disassembled prescription, with Gypsum Fibrosum primarily contributing to the efficacy, followed by Indigo Naturalis and Junci Medulla. QP had an effective antipyretic effect, which was related to lowering the levels of TNF-α, IL-6, IL-1ß, and calcium in rabbit serum, lowering the levels of PGE2 and cAMP in rabbit cerebrospinal fluid, and increasing the level of calcium in rabbit cerebrospinal fluid. A total of 27 endogenous biomarkers were screened by serum metabolomics for the treatment of fever with QP. It is hypothesized that the antipyretic mechanism of QP may be related to regulating α-linolenic acid, sphingolipid, tryptophan, and bile acid metabolism. In summary, QP exhibited a significant antipyretic effect in rabbits with lipopolysaccharide-induced fever.


Asunto(s)
Antipiréticos , Medicamentos Herbarios Chinos , Fiebre , Metabolómica , Animales , Conejos , Antipiréticos/farmacología , Medicamentos Herbarios Chinos/farmacología , Metabolómica/métodos , Fiebre/tratamiento farmacológico , Masculino , Modelos Animales de Enfermedad , Lipopolisacáridos/farmacología , Cromatografía Líquida de Alta Presión/métodos
11.
Biosensors (Basel) ; 14(5)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38785705

RESUMEN

The development of rapid detection tools for viruses is vital for the prevention of pandemics and biothreats. Aptamers that target inactivated viruses are attractive for sensors due to their improved biosafety. Here, we evaluated a DNA aptamer (named as 6.9) that specifically binds to the inactivated SARS-CoV-2 virus with a low dissociation constant (KD = 9.6 nM) for the first time. Based on aptamer 6.9, we developed a fiber-optic evanescent wave (FOEW) biosensor. Inactivated SARS-CoV-2 and the Cy5.5-tagged short complementary strand competitively bound with the aptamer immobilized on the surface of the sensor. The detection of the inactivated SARS-CoV-2 virus was realized within six minutes with a limit of detection (LOD, S/N = 3) of 740 fg/mL. We also developed an electrochemical impedance aptasensor which exhibited an LOD of 5.1 fg/mL and high specificity. We further demonstrated that the LODs of the FOEW and electrochemical impedance aptasensors were, respectively, more than 1000 and 100,000 times lower than those of commercial colloidal gold test strips. We foresee that the facile aptamer isolation process and sensor design can be easily extended for the detection of other inactivated viruses.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , COVID-19 , Espectroscopía Dieléctrica , Límite de Detección , SARS-CoV-2 , SARS-CoV-2/aislamiento & purificación , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , COVID-19/diagnóstico , COVID-19/virología , Humanos , Tecnología de Fibra Óptica
12.
Hum Reprod ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783610

RESUMEN

STUDY QUESTION: Does the expression of proliferating cell nuclear antigen (PCNA) in the endometrium regulate endometrial receptivity in patients with recurrent implantation failure (RIF)? SUMMARY ANSWER: A high abundance of PCNA attenuates endometrial adhesive capacity and decidualization in patients with RIF. WHAT IS KNOWN ALREADY: Aberrant expression of PCNA has been discovered in multiple infertility-related disorders. However, the expression pattern and role of PCNA in the establishment of endometrial receptivity and endometrial decidualization in patients with RIF remain unclear. STUDY DESIGN, SIZE, DURATION: We analysed the expression of PCNA in mid-secretory endometrial tissues from 24 patients with RIF and 24 healthy women. Additionally, PCNA expression levels were measured in proliferative and mid-secretory phase endometrial tissue samples from women with regular menstrual cycles and in decidual tissue samples taken from ten women during normal early pregnancy (n = 10 per phase for each group). The function and regulatory mechanisms of PCNA in endometrial adhesive capacity and endometrial decidualization were investigated using BeWo spheroids, Ishikawa cells, and human endometrial stromal cells (HESCs). PARTICIPANTS/MATERIALS, SETTING, METHODS: The expression of PCNA in mid-secretory endometrial tissues of patients with RIF and women with normal endometrium and in endometrial tissue at different stages of the menstrual cycle and in decidualized tissues was analysed by RT-qPCR, western blot, and immunohistochemistry staining (IHC). Furthermore, the number of BeWo spheroids directly attached to the Ishikawa cell monolayers, and the potential molecular mechanisms involved, were compared between cells overexpressing PCNA and a control group. Additionally, the effect and regulatory mechanisms of PCNA on the decidualization of HESCs in vitro were investigated. MAIN RESULTS AND THE ROLE OF CHANCE: Our findings indicated that the abundance of PCNA was dramatically greater in mid-secretory endometrial tissues from patients with RIF than in those from women with healthy endometrium. The expression of PCNA increased in the proliferative phase of the menstrual cycle but decreased gradually in the mid-secretory phase and in decidual tissues. Interestingly, PCNA was expressed in both human endometrial epithelial cells (HEECs) and HESCs. In Ishikawa cells, PCNA overexpression dramatically reduced the endometrial adhesive capacity by inhibiting the expression of adhesion molecules (E-cadherin and integrin ß3) and activating the FAK/paxillin signalling pathway. Furthermore, in HESCs, PCNA overexpression attenuated endometrial decidualization by activating the AKT/ß-catenin signalling pathway and increasing tight junctions between cells by upregulating ZO-1 and occludin expression. In addition, PCNA-ELAVL1 interactions were confirmed by coimmunoprecipitation in decidualized HESCs. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: The functional analysis of PCNA was limited by the number of human endometrial tissues. A larger sample size is required to further explore the potential roles of PCNA during embryo implantation. Moreover, the present results should be taken with caution, as only a few of the embryos that were transferred in RIF patients population underwent preimplantation genetic testing for embryonic chromosome aneuploidies (PGT-A), despite embryo ploidy testing being significant in the diagnosis of unexplained RIF. WIDER IMPLICATIONS OF THESE FINDINGS: High PCNA expression attenuates endometrial adhesive capacity and decidualization in patients with RIF. These findings provide new insights into the potential mechanisms underlying the occurrence of implantation failure. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the National Natural Science Foundation of China (82101698), Shandong Provincial Natural Science Foundation (ZR2021MH012), and the Science and Technology Plan of Yantai (2023YD021 and 2022YD031). The authors have no conflicts of interest to disclose. TRIAL REGISTRATION NUMBER: N/A.

13.
ACS Omega ; 9(20): 22386-22397, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38799314

RESUMEN

Salidroside, a valuable phenylethanoid glycoside, is obtained from plants belonging to the Rhodiola genus, known for its diverse biological properties. At present, salidroside is still far from large-scale industrial production due to its lower titer and higher process cost. In this study, we have for the first time increased salidroside production by enhancing UDP-glucose supply in situ. We constructed an in vivo UDP-glucose regeneration system that works in conjunction with UDP-glucose transferase from Rhodiola innovatively to improve UDP-glucose availability. And a coculture was formed in order to enable de novo salidroside synthesis. Confronted with the influence of tyrosol on strain growth, an adaptive laboratory evolution strategy was implemented to enhance the strain's tolerance. Similarly, salidroside production was optimized through refinement of the fermentation medium, the inoculation ratio of the two microbes, and the inoculation size. The final salidroside titer reached 3.8 g/L. This was the highest titer achieved at the shake flask level in the existing reports. And this marked the first successful synthesis of salidroside in an in situ enhanced UDP-glucose system using sucrose. The cost was reduced by 93% due to the use of inexpensive substrates. This accomplishment laid a robust foundation for further investigations into the synthesis of other notable glycosides and natural compounds.

14.
Drug Dev Res ; 85(4): e22198, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38764200

RESUMEN

Hepatocellular carcinoma (HCC) is one of the deadliest cancers. The prevention and therapy for this deadly disease remain a global medical challenge. In this study, we investigated the effect of pantoprazole (PPZ) on the carcinogenesis and growth of HCC. Both diethylnitrosamine (DEN) plus CCl4-induced and DEN plus high fat diet (HFD)-induced HCC models in mice were established. Cytokines and cell proliferation-associated gene in the liver tissues of mice and HCC cells were analyzed. Cellular glycolysis and Na+/H+ exchange activity were measured. The preventive administration of pantoprazole (PPZ) at a clinically relevant low dose markedly suppressed HCC carcinogenesis in both DEN plus CCl4-induced and HFD-induced murine HCC models, whereas the therapeutic administration of PPZ at the dose suppressed the growth of HCC. In the liver tissues of PPZ-treated mice, inflammatory cytokines, IL1, CXCL1, CXCL5, CXCL9, CXCL10, CCL2, CCL5, CCL6, CCL7, CCL20, and CCL22, were reduced. The administration of CXCL1, CXCL5, CCL2, or CCL20 all reversed PPZ-suppressed DEN plus CCL4-induced HCC carcinogenesis in mice. PPZ inhibited the expressions of CCNA2, CCNB2, CCNE2, CDC25C, CDCA5, CDK1, CDK2, TOP2A, TTK, AURKA, and BIRC5 in HCC cells. Further results showed that PPZ reduced the production of these inflammatory cytokines and the expression of these cell proliferation-associated genes through the inhibition of glycolysis and Na+/H+ exchange. In conclusion, PPZ suppresses the carcinogenesis and growth of HCC, which is related to inhibiting the production of inflammatory cytokines and the expression of cell proliferation-associated genes in the liver through the inhibition of glycolysis and Na+/H+ exchange.


Asunto(s)
Carcinoma Hepatocelular , Proliferación Celular , Glucólisis , Neoplasias Hepáticas , Pantoprazol , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/metabolismo , Glucólisis/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/metabolismo , Ratones , Pantoprazol/farmacología , Masculino , Proliferación Celular/efectos de los fármacos , Humanos , Ratones Endogámicos C57BL , Carcinogénesis/efectos de los fármacos , Dietilnitrosamina/toxicidad , Citocinas/metabolismo , Línea Celular Tumoral , Dieta Alta en Grasa/efectos adversos
16.
Heliyon ; 10(8): e29428, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38638966

RESUMEN

Activated astrocytes are a primary source of inflammatory factors following traumatic optic neuropathy (TON). Accumulation of inflammatory factors in this context leads to increased axonal damage and loss of retinal ganglion cells (RGCs). Therefore, in the present study, we explored the role of the astrocyte G protein-coupled estrogen receptor (GPER) in regulating inflammatory factors following optic nerve crush (ONC), and analyzed its potential regulatory mechanisms. Overall, our results showed that GPER was abundantly expressed in the optic nerve, and co-localized with glial fibrillary acidic proteins (GFAP). Exogenous administration of G-1 led to a significant reduction in astrocyte activation and expression of inflammation-related factors (including IL-1ß, TNF-α, NFκB, and p-NFκB). Additionally, it dramatically increased the survival of RGCs. In contrast, astrocytes were activated to a greater extent by exogenous G15 administration; however, RGCs survival was significantly reduced. In vitro, GPER activation significantly reduced astrocyte activation and the release of inflammation-related factors. In conclusion, activation of astrocyte GPER significantly reduced ONC inflammation levels, and should be explored as a potential target pathway for protecting the optic nerve and RGCs after TON.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124302, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640623

RESUMEN

Lead pollution has remained a significant global concern for several decades due to its detrimental effects on the brain, heart, kidneys, lungs, and immune system across all age groups. Addressing the demand for detecting trace amounts of lead in food samples, we have developed a novel biosensor based on fluorescence resonance energy transfer (FRET) from fluorescein R6G to gold nanoclusters (AuNCs-CCY). By utilizing polypeptides as a template, we successfully synthesized AuNCs-CCY with an excitation spectrum that overlaps with the emission spectrum of R6G. Exploiting the fact that Pb2+ induces the aggregation of gold nanoclusters, leading to the separation of R6G from AuNCs-CCY and subsequent fluorescence recovery, we achieved the quantitative detection of Pb2+. Within the concentration range of 0.002-0.20 µM, a linear relationship was observed between the fluorescence enhancement value (F-F0) and Pb2+ concentration, characterized by the linear equation y = 2398.69x + 87.87 (R2 = 0.996). The limit of detection (LOD) for Pb2+ was determined to be 0.00079 µM (3σ/K). The recovery rate ranged from 96 % to 104 %, with a relative standard deviation (RSD) below 10 %. These findings demonstrate the potential application value of our biosensor, which offers a promising approach to address the urgent need for sensitive detection of heavy metal ions, specifically Pb2+, in food samples.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Oro , Plomo , Límite de Detección , Nanopartículas del Metal , Transferencia Resonante de Energía de Fluorescencia/métodos , Plomo/análisis , Oro/química , Nanopartículas del Metal/química , Técnicas Biosensibles/métodos
18.
Front Bioeng Biotechnol ; 12: 1392414, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605985

RESUMEN

Succinic acid (SA), one of the 12 top platform chemicals produced from biomass, is a precursor of various high value-added derivatives. Specially, 1 mol CO2 is assimilated in 1 mol SA biosynthetic route under anaerobic conditions, which helps to achieve carbon reduction goals. In this review, methods for enhanced CO2 fixation in SA production and utilization of waste biomass for SA production are reviewed. Bioelectrochemical and bioreactor coupling systems constructed with off-gas reutilization to capture CO2 more efficiently were highlighted. In addition, the techno-economic analysis and carbon sequestration benefits for the synthesis of bio-based SA from CO2 and waste biomass are analyzed. Finally, a droplet microfluidics-based high-throughput screening technique applied to the future bioproduction of SA is proposed as a promising approach.

19.
Front Genet ; 15: 1292757, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38645487

RESUMEN

Background: About 10% of individuals undergoing in vitro fertilization encounter recurrent implantation failure (RIF), which represents a worldwide social and economic concern. Nevertheless, the critical genes and genetic mechanisms underlying RIF are largely unknown. Methods: We first obtained three comprehensive microarray datasets "GSE58144, GSE103465 and GSE111974". The differentially expressed genes (DEGs) evaluation, enrichment analysis, as well as efficient weighted gene co-expression network analysis (WGCNA), were employed for distinguishing RIF-linked hub genes, which were tested by RT-qPCR in our 30 independent samples. Next, we studied the topography of infiltration of 22 immune cell subpopulations and the association between hub genes and immune cells in RIF using the CIBERSORT algorithm. Finally, a novel ridge plot was utilized to exhibit the potential function of core genes. Results: The enrichment of GO/KEGG pathways reveals that Herpes simplex virus 1 infection and Salmonella infection may have an important role in RIF. After WGCNA, the intersected genes with the previous DEGs were obtained using both variance and association. Notably, the subsequent nine hub genes were finally selected: ACTL6A, BECN1, SNRPD1, POLR1B, GSK3B, PPP2CA, RBBP7, PLK4, and RFC4, based on the PPI network and three different algorithms, whose expression patterns were also verified by RT-qPCR. With in-depth analysis, we speculated that key genes mentioned above might be involved in the RIF through disturbing endometrial microflora homeostasis, impairing autophagy, and inhibiting the proliferation of endometrium. Furthermore, the current study revealed the aberrant immune infiltration patterns and emphasized that uterine NK cells (uNK) and CD4+ T cells were substantially altered in RIF endometrium. Finally, the ridge plot displayed a clear and crucial association between hub genes and other genes and key pathways. Conclusion: We first utilized WGCNA to identify the most potential nine hub genes which might be associated with RIF. Meanwhile, this study offers insights into the landscape of immune infiltration status to reveal the underlying immune pathogenesis of RIF. This may be a direction for the next study of RIF etiology. Further studies would be required to investigate the involved mechanisms.

20.
Heliyon ; 10(7): e28439, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38601561

RESUMEN

Primary glioblastoma(pGBM) is the most malignant tumor of the central nervous system. Radiotherapy, chemotherapy and surgical treatment have little effect on the survival of pGBM patients. The prognosis is often poorly once the tumor recurs. It is urgent to develop new therapies for patients. In recent years, studies have been clarified that miRNA have a powerful regulating effect on the genes. However, the main group of miRNAs in regulating long-term survival specific related genes of pGBM is still unclear. Given that the survival period of most glioma patients is relatively short, studying long-term survival patients with pGBM is of great value for this disease. Our study aim to identify key miRNAs with long-term survival related genes present in pGBM and uncover their potential mechanisms. The gene expression profiles of GSE53733, GSE15824, GSE30563, GSE50161 were obtained from the Gene Expression Omnibus database. Firstly, samples were divided into 3 groups according to its survival time and each group compare to the normal control group. Then we obtained differential expression genes (DEGs) with a long-term survival specific (LTSDEGs) and a short-term survival specific DEGs (STSDEGs). Next, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted with LTSDEGs and STSDEGs together. Moreover, we used the UALCAN database to verify LTSDEGs and STSDEGs, and obtained long-term verified survival specific DEGs(LTVSDEGs) and short-term verified survival specific DEGs(STVSDEGs). Finally, we established the predicted key miRNAs-LTVSDEGs interaction network. The protein expressions of the top 4 LTVSDEGs were verified in the HPA database with immunohistochemical staining. In total, we found 260 genes changed in LTSDEGs and 822 genes changed in STSDEGs. GO and KEGG results shown that the major changes are focused on tumor metabolism. 9 LTVSDEGs and 18 STVSDEGs were verified in UALCAN database. As for protein expression verification in top 4 LTVSDEGs, ZNF630, BLVRB and RPA3 were verified, while TPBG was not detected. We obtained 59 key miRNA from the predicted key miRNAs-LTVSDEGs interaction network. 25 key miRNAs were verified using GSE90603. Finally, we constructed the key miRNAs-LTVSDEGs network using a Sankey diagram, including 25 miRNAs and 7 LTVSDEGs. In conclusion, our study shows that there is a close relationship between metabolic changes and survival in pGBM. Besides, we established a key miRNAs-LTVSDEGs network for pGBM, which could be the key path in prolonging the life of pGBM patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...