RESUMEN
Fragile X syndrome (FXS), the leading genetic cause of intellectual disability, arises from FMR1 gene silencing and loss of the FMRP protein. N6-methyladenosine (m 6 A) is a prevalent mRNA modification essential for post-transcriptional regulation. FMRP is known to bind to and regulate the stability of m 6 A-containing transcripts. However, how loss of FMRP impacts on transcriptome-wide m 6 A modifications in FXS patients remains unknown. To answer this question, we generated cortical neurons differentiated from induced pluripotent stem cells (iPSC) derived from healthy subjects and FXS patients. In electrophysiology recordings, we validated that synaptic and neuronal network defects in iPSC-derived FXS neurons corresponded to the clinical EEG data of the patients from which the corresponding iPSC line was derived. In analysis of transcriptome-wide methylation, we show that FMRP deficiency led to increased translation of m 6 A writers, resulting in hypermethylation that primarily affecting synapse-associated transcripts and increased mRNA decay. Conversely, in the presence of an m 6 A writer inhibitor, synaptic defects in FXS neurons were rescued. Taken together, our findings uncover that an FMRP-dependent epi-transcriptomic mechanism contributes to FXS pathogenesis by disrupting m 6 A modifications in FXS, suggesting a promising avenue for m 6 A-targeted therapies.
RESUMEN
Data generators are imperative to support design, management, scenario simulation, risk assessment, and regulatory compliance. Hybrid sewer systems struggle with accurate water quality and quantity monitoring due to variable flow patterns, missing connections, limited monitoring capacity. To accurately regenerate operational data for hybrid sewer system along the sewer shed, a visualized generator was developed to simulate wastewater quantity and quality variations within different scales in the sewer system. The generator was constructed using a multi-level, tree-structured model incorporating various modules, including domestic, industrial, WWTP, and pump stations, to simulate time series variations. A novel instantaneous unit pollutant-hydrograph modeling associated with wastewater conductivity monitoring data was proposed in the generator. The validated generation data of flow, COD, ammonia nitrogen, and phosphate were well-fitted with the full-scale measured data in residential areas, pump stations, and WWTPs. The proposed generator could be used to predict and simulate the dynamic flow and wastewater quality variations at different scale regions in sewer network-wide to support the operation and management of pump stations and WWTPs. The generator modules enable accurate simulation and visualization of water quality and quantity in hybrid sewer system, enhancing the understanding of infiltration, inflow, and pollutant dynamics, especially under challenging conditions like simultaneous RDII and overflow.
RESUMEN
This paper provides a historical overview of research on language teachers' beliefs and emotions, examining how studies on teacher emotions have influenced research on beliefs and classroom practices. Using bibliometric analysis, we mapped trends and paradigms in the literature, focusing on significant developments in this field. Our findings reveal a notable increase in publications on language teacher beliefs, particularly since 2018, indicating growing academic interest. Highly cited studies predominantly emphasize the emotional aspects of teaching, signaling a broader shift in research focus from cognitive to emotional dimensions, commonly referred to as the "emotional turn." The analysis also identifies influential authors and institutions, with the USA, China, and the UK leading in contributions. Research themes have evolved over time, moving from foundational beliefs and teaching practices to more complex areas like teacher psychology, with particular attention to emotional regulation, identity, and agency in language teaching. Finally, we offer insights for future research, aiming to further explore the intricate relationship between teachers' beliefs and emotions.
RESUMEN
Tracking and reconstructing deformable objects with little texture is challenging due to the lack of features. Here we introduce "invisible markers" for accurate and robust correspondence matching and tracking. Our markers are visible only under ultraviolet (UV) light. We build a novel imaging system for capturing videos of deformed objects under their original untouched appearance (which may have little texture) and, simultaneously, with our markers. We develop an algorithm that first establishes accurate correspondences using video frames with markers, and then transfers them to the untouched views as ground-truth labels. In this way, we are able to generate high-quality labeled data for training learning-based algorithms. We contribute a large real-world dataset, DOT, for tracking deformable objects with little or no texture. Our dataset has about one million video frames of various types of deformable objects. We provide ground truth tracked correspondences in both 2D and 3D. We benchmark state-of-the-art methods on optical flow and deformable object reconstruction using our dataset, which poses great challenges. By training on DOT, their performance significantly improves, not only on our dataset, but also on other unseen data.
RESUMEN
BACKGROUND: Spheno-orbital meningioma (SOM) represents a unique variant of sphenoid wing meningiomas, distinguished by its propensity for bone infiltration and cranio-orbital involvement. SOM exhibits a considerable incidence of misdiagnosis and recurrence. PURPOSES: To elucidate the clinical, radiological, and pathological characteristics of SOM. METHODS: Review of electronic medical records, histopathology, radiological images and follow-up information of 100 SOM patients. RESULTS: Of the 100 patients (28 males, 72 females) with SOM, mean age was 46.8 ± 12.6 years and prevalent symptoms were proptosis (99%). All the CT scans showed hyperostosis with 89.3% of the hyperostosis having an irregular edge. In MRI scans, dural tail sign was observed across all patients and the cranio-orbital tumors often penetrated temporal muscle (74.1%), extraocular muscle (74.1%) and lacrimal gland (63%). All the 100 patients underwent surgical intervention, and among them, 62 individuals received postoperative radiotherapy. Grade I resections had a lower recurrence rate(16.7%), which further decreased with the addition of radiotherapy(13.9%). In contrast, all patients with grade II or higher grade resections without radiotherapy experienced recurrence, indicating a higher risk associated with less complete tumor removal. The pathological examination revealed that intraorbital sections exhibited comparable tumor density to intraorbital SOM tumors, along with increased fibrous density but decreased vascular distribution. CONCLUSIONS: Radiological characteristics of SOM included cranio-orbital tumors, hyperostosis of the sphenoid wing with an irregular edge, and dural tail sign. Combination of gross total resection and adjuvant radiotherapy was recommended to minimize recurrence rate. Intracranial SOM tumors tended to be softer and more bleed-prone than intraorbital sections, necessitating surgical precision.
Asunto(s)
Imagen por Resonancia Magnética , Neoplasias Meníngeas , Meningioma , Neoplasias Orbitales , Hueso Esfenoides , Tomografía Computarizada por Rayos X , Humanos , Meningioma/diagnóstico por imagen , Meningioma/patología , Meningioma/diagnóstico , Masculino , Persona de Mediana Edad , Femenino , Adulto , Neoplasias Orbitales/diagnóstico por imagen , Neoplasias Orbitales/patología , Neoplasias Orbitales/diagnóstico , Neoplasias Meníngeas/patología , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/diagnóstico , Hueso Esfenoides/patología , Hueso Esfenoides/diagnóstico por imagen , Estudios Retrospectivos , Anciano , Recurrencia Local de Neoplasia , Estudios de Seguimiento , Adulto JovenRESUMEN
Substantial uncertainties pose challenges to the accuracy of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) quantification in wastewater. We conducted a comprehensive evaluation of two concentration methods, three nucleic acid extraction methods, and the amplification performance of eight primer-probe sets. Our results showed that the two concentration methods exhibited similar recovery rates. Specifically, using a 30 kDa cut-off ultrafilter and a centrifugal force of 2500 g achieved the highest virus recovery rates (27.32 ± 8.06 % and 26.37 ± 7.77 %, respectively), with lower corresponding quantification uncertainties of 29.51 % and 29.47 % in ultrafiltration methods. Similarly, a 15 % PEG concentration with 1.5 M NaCl markedly improved virus recovery (26.76 ± 5.92 % and 28.47 ± 6.74 %, respectively), and reducing variation to 22.16 % and 23.66 % in the PEG precipitation method. Additionally, employing a vigorous bead-beating approach at 6 m/s during viral RNA extraction significantly increased RNA yield, with an efficiency reaching up to 82.18 %. Among the evaluated eight primer-probe sets, the E_Sarbeco primer-probe set provided the most stable and consistent quantitative results across various sample matrices. These findings are crucial for establishing robust viral quantification protocols and enhancing methodological precision for effective wastewater surveillance, enabling sensitive and precise detection of SARS-CoV-2.
Asunto(s)
COVID-19 , SARS-CoV-2 , Aguas Residuales , Aguas Residuales/virología , ARN Viral/análisis , Incertidumbre , Técnicas de Amplificación de Ácido Nucleico/métodosRESUMEN
Sewage surveillance is widely applied to track valid human excretion information and identify public health conditions during corona virus disease 2019 (COVID-19) pandemic. This approach can be applied to monitor the antibiotic resistance level in sewers and to assess the risk of spreading antibiotic resistance in municipal wastewater systems. However, there is still little information about human antibiotic resistance occurrence characteristics in sewer system. This study conducted a field trial for whole year to advance understanding on spatial and temporal occurrence of antibiotic resistance genes (ARGs) in gravity sewerage. The spatial distribution of ARGs along the drainage pipe line (from human settlements to wastewater treatement pant (WWTP)) was insignificant, which may be affected by irregular human emission alongside the pipeline. The correlation between ARGs and antibiotics in sewage was insignificant. The temporal distribution showed that the effect of temperature on ARGs abundance was evident, the ARGs abundance in sewage was generally higher during the cold season. Metagenomic analysis revealed that the detected ARGs were mainly distributed in Proteobacteria (47.51 %) and Antinobacteria (20.11 %). Potential hosts of ARGs in sewage were mainly identified as human gut microorganisms, including human pathogenic bacteria, such as Prevotella, Kocuria, and Propionibacterium, etc. This study provides a new insight into the sewerage surveillance tracking characteristics of human ARGs in sewer system, and suggesting that the sewage-carried ARGs surveillance is a promising method for assessment and management of antibiotic resistance level on population size.
Asunto(s)
Farmacorresistencia Microbiana , Monitoreo del Ambiente , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Humanos , Farmacorresistencia Microbiana/genética , Monitoreo del Ambiente/métodos , Antibacterianos/análisis , COVID-19 , Aguas Residuales/microbiología , Farmacorresistencia Bacteriana/genética , Eliminación de Residuos Líquidos , Genes BacterianosRESUMEN
Chemicals are commonly dosed in sewer systems to reduce the emission of hydrogen sulfide (H2S) and methane (CH4), incurring high costs and environmental concerns. Nitrite dosing is a promising approach as nitrite can be produced from urine wastewater, which is a feasible integrated water management strategy. However, nitrite dosing usually requires strict conditions, e.g., relatively high nitrite concentration (e.g., â¼200 mg N/L) and acidic environment, to inhibit microorganisms. In contrast to "microbial inhibition", this study proposes "microbial utilization" concept, i.e., utilizing nitrite as a substrate for H2S and CH4 consumption in sewer. In a laboratory-scale sewer reactor, nitrite at a relatively low concentrations of 25-48 mg N/L was continuously dosed. Two nitrite-dependent microbial utilization processes, i.e., nitrite-dependent anaerobic methane oxidation (n-DAMO) and microbial sulfide oxidation, successfully occurred in conjunction with nitrite reduction. The occurrence of both processes achieved a 58 % reduction in dissolved methane and over 90 % sulfide removal in the sewer reactor, with microbial activities measured as 15.6 mg CH4/(L·h) and 29.4 mg S/(L·h), respectively. High copy numbers of n-DAMO bacteria and sulfide-oxidizing bacteria (SOB) were detected in both sewer biofilms and sediments. Mechanism analysis confirmed that the dosed nitrite at a relatively low level did not cause the inhibition of sulfidogenic process due to the downward migration of activity zones in sewer sediments. Therefore, the proposed "microbial utilization" concept offers a new alternative for simultaneous removal of sulfide and methane in sewers.
RESUMEN
How to intensify the ammonia oxidation rate (AOR) is still a bottleneck impeding the technology development for the innovative acidic partial nitritation because the eosinophilic ammonia-oxidizing bacteria (AOB), such as Nitrosoglobus or Nitrosospira, were inhibited by the high-level free nitrous acid (FNA) accumulation in acidic environments. In this study, an innovative approach of dynamic acidic pH regulation control strategy was proposed to realize high-rate acidic partial nitritation driven by common AOB genus Nitrosomonas. The acidic partial nitrification process was carried out in a laboratory-scale sequencing batch moving bed biofilm reactor (SBMBBR) for long-term (700 days) to track the effect of dynamic acidic pH on nitrifying bacterial activity. The results indicated that the influent NH4+-N concentration was about 100 mg/L, the nitrite accumulation ratio was exceeding 90%, and the maximum AOR can reach 14.5 ± 2.6 mg N L-1h-1. Although the half-saturation inhibition constant of NOB (KI_FNA(AOB)) reached 0.37 ± 0.10 mg HNO2N/L and showed extreme adaptability in FNA, the inactivation effect of FNA (6.1 mg HNO2N/L) for NOB was much greater than that of AOB, with inactivation rates of 0.61 ± 0.08 h-1 and 0.06 ± 0.01 h-1, respectively. The effluent pH was gradually reduced to 4.5 by ammonia oxidation process and the periodic FNA concentration reached 6.5 mg HNO2N/L to inactivate nitrite-oxidizing bacteria (NOB) without negatively affecting Nitrosomonas during long-term operation. This result provides new insights for the future implementation of high-rate stabilized acidic partial nitritation by Nitrosomonas.
Asunto(s)
Amoníaco , Reactores Biológicos , Nitrificación , Nitrosomonas , Oxidación-Reducción , Concentración de Iones de Hidrógeno , Nitrosomonas/metabolismo , Reactores Biológicos/microbiología , Amoníaco/metabolismo , Biopelículas , Ácido Nitroso/metabolismo , Nitritos/metabolismoRESUMEN
Scarlet fever (SF) is an acute respiratory transmitted disease that primarily affects children. The influence of meteorological factors and air pollutants on SF in children has been proved, but the relevant evidence in Northwest China is still lacking. Based on the weekly reported cases of SF in children in Lanzhou, northwest China, from 2014 to 2018, we used geographical detectors, distributed lag nonlinear models (DLNM), and bivariate response models to explore the influence of meteorological factors and air pollutants with SF. It was found that ozone (O3), carbon monoxide (CO), sulfur dioxide (SO2), temperature, pressure, water vapor pressure and wind speed were significantly correlated with SF based on geographical detectors. With the median as reference, the influence of high temperature, low pressure and high pressure on SF has a risk effect (relative risk (RR) > 1), and under extreme conditions, the dangerous effect was still significant. High O3 had the strongest effect at a 6-week delay, with an RR of 5.43 (95%CI: 1.74,16.96). The risk effect of high SO2 was strongest in the week of exposure, and the maximum risk effect was 1.37 (95%CI: 1.08,1.73). The interactions showed synergistic effects between high temperatures and O3, high pressure and high SO2, high nitrogen dioxide (NO2) and high particulate matter with diameter of less than 10 µm (PM10), respectively. In conclusion, high temperature, pressure, high O3 and SO2 were the most important factors affecting the occurrence of SF in children, which will provide theoretical support for follow-up research and disease prevention policy formulation.
Asunto(s)
Contaminantes Atmosféricos , Escarlatina , China/epidemiología , Humanos , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/efectos adversos , Niño , Escarlatina/epidemiología , Preescolar , Conceptos Meteorológicos , Tiempo (Meteorología) , Lactante , Ozono/análisis , Ozono/efectos adversos , Dióxido de Azufre/análisisRESUMEN
Fragile X syndrome (FXS) is an X-linked disorder that often leads to intellectual disability, anxiety, and sensory hypersensitivity. While sound sensitivity (hyperacusis) is a distressing symptom in FXS, its neural basis is not well understood. It is postulated that hyperacusis may stem from temporal lobe hyperexcitability or dysregulation in top-down modulation. Studying the neural mechanisms underlying sound sensitivity in FXS using scalp electroencephalography (EEG) is challenging because the temporal and frontal regions have overlapping neural projections that are difficult to differentiate. To overcome this challenge, we conducted EEG source analysis on a group of 36 individuals with FXS and 39 matched healthy controls. Our goal was to characterize the spatial and temporal properties of the response to an auditory chirp stimulus. Our results showed that males with FXS exhibit excessive activation in the frontal cortex in response to the stimulus onset, which may reflect changes in top-down modulation of auditory processing. Additionally, during the chirp stimulus, individuals with FXS demonstrated a reduction in typical gamma phase synchrony, along with an increase in asynchronous gamma power, across multiple regions, most strongly in temporal cortex. Consistent with these findings, we observed a decrease in the signal-to-noise ratio, estimated by the ratio of synchronous to asynchronous gamma activity, in individuals with FXS. Furthermore, this ratio was highly correlated with performance in an auditory attention task. Compared to controls, males with FXS demonstrated elevated bidirectional frontotemporal information flow at chirp onset. The evidence indicates that both temporal lobe hyperexcitability and disruptions in top-down regulation play a role in auditory sensitivity disturbances in FXS. These findings have the potential to guide the development of therapeutic targets and back-translation strategies.
RESUMEN
The proliferation of nitrite oxidizing bacteria (NOB) still remains as a major challenge for nitrogen removal in mainstream wastewater treatment process based on partial nitrification (PN). This study investigated different operational conditions to establish mainstream PN for the fast start-up of membrane aerated biofilm reactor (MABR) systems. Different oxygen controlling strategies were adopted by employing different influent NH4+-N loads and oxygen supply strategies to inhibit NOB. We indicated the essential for NOB suppression was to reduce the oxygen concentration of the inner biofilm and the thickness of aerobic biofilm. A higher NH4+-N load (7.4 g-N/(m2·d)) induced higher oxygen utilization rate (14.4 g-O2/(m2·d)) and steeper gradient of oxygen concentration, which reduced the thickness of aerobic biofilm. Employing closed-end oxygen supply mode exhibited the minimum concentration of oxygen to realize PN, which was over 46% reduction of the normal open-end oxygen mode. Under the conditions of high NH4+-N load and closed-end oxygen supply mode, the microbial community exhibited a comparative advantage of ammonium oxidizing bacteria over NOB in the aerobic biofilm, with a relative abundance of Nitrosomonas of 30-40% and no detection of Nitrospira. The optimal fast start-up strategy was proposed with open-end aeration mode in the first 10 days and closed-end mode subsequently under high NH4+-N load. The results revealed the mechanism of NOB inhibition on the biofilm and provided strategies for a quick start-up and stable mainstream PN simultaneously, which poses great significance for the future application of MABR.
Asunto(s)
Biopelículas , Reactores Biológicos , Nitrificación , Oxígeno , Oxígeno/metabolismo , Eliminación de Residuos Líquidos/métodos , Nitrógeno/metabolismo , Membranas Artificiales , Aguas Residuales/químicaRESUMEN
The Stöber method is a widely-used sol-gel route for synthesizing amorphous SiO2 colloids and conformal coatings. However, the material systems compatible with this method are still limited. Herein, we have extended the approach to metal-organic frameworks (MOFs) and coordination polymers (CPs) by mimicking the Stöber method. We introduce a general synthesis route to amorphous MOFs or CPs by making use of a base-vapor diffusion method, which allows to precisely control the growth kinetics. Twenty-four different amorphous CPs colloids were successfully synthesized by selecting 12 metal ions and 17 organic ligands. Moreover, by introducing functional nanoparticles (NPs), a conformal amorphous MOFs coating with controllable thickness can be grown on NPs to form core-shell colloids. The versatility of this amorphous coating technology was demonstrated by synthesizing over 100 core-shell composites from 20 amorphous CPs shells and over 30 different NPs. Besides, various multifunctional nanostructures, such as conformal yolk-amorphous MOF shell, core@metal oxides, and core@carbon, can be obtained through one-step transformation of the core@amorphous MOFs. This work significantly enriches the Stöber method and introduces a platform, enabling the systematic design of colloids exhibiting different level of functionality and complexity.
RESUMEN
Kinship analysis is a crucial aspect of forensic genetics. This study analyzed 1,222 publications on kinship analysis from 1960 to 2023 using bibliometric analysis techniques, investigating the annual publication and citation patterns, most productive countries, organizations, authors and journals, most cited documents and co-occurrence of keywords. The initial publication in this field occurred in 1960. Since 2007, there has been a significant increase in publications, with over 30 published annually except for 2010. China had the most publications (n = 213, 17.43%), followed by the United States (n = 175, 14.32%) and Germany (n = 89, 7.28%). The United States also had the highest citation count. Sichuan University in China has the largest number of published articles. The University of Leipzig and the University of Cologne in Germany exhibit the highest total citation count and average citation, respectively. Budowle B was the most prolific author and Kayser M was the most cited author. In terms of publications, Forensic Science International- Genetics, Forensic Science International, and International Journal of Legal Medicine were the most prolific journals. Among them, Forensic Science International-Genetics boasted the highest h-index, citation count, and average citation rate. The most frequently cited publication was "Van Oven M, 2009, Hum Mutat", with a total of 1,361 citations. The most frequent co-occurrence keyword included "DNA", "Loci", "Paternity testing", "Population", "Markers", and "Identification", with recent interest focusing on "Kinship analysis", "SNP" and "Inference". The current research is centered around microhaplotypes, forensic genetic genealogy, and massively parallel sequencing. The field advanced with new DNA analysis methods, tools, and genetic markers. Collaborative research among nations, organizations, and authors benefits idea exchange, problem-solving efficiency, and high-quality results.
RESUMEN
PURPOSE: Major depressive disorder (MDD) disproportionately affects those living with autism spectrum disorder (ASD) and is associated with significant impairment and treatment recidivism. METHODS: We studied the use of accelerated theta burst stimulation (ATBS) for the treatment of refractory MDD in ASD (3 treatments daily x 10 days). This prospective open-label 12-week trial included 10 subjects with a mean age of 21.5 years, randomized to receive unilateral or bilateral stimulation of the dorsolateral prefrontal cortex. RESULTS: One participant dropped out of the study due to intolerability. In both treatment arms, depressive symptoms, scored on the Hamilton Depression Rating Scale scores, diminished substantially. At 12 weeks post-treatment, full remission was sustained in 5 subjects and partial remission in 3 subjects. Treatment with ATBS, regardless of the site of stimulation, was associated with a significant, substantial, and sustained improvement in depressive symptomatology via the primary outcome measure, the Hamilton Depression Rating Scale. Additional secondary measures, including self-report depression scales, fluid cognition, and sleep quality, also showed significant improvement. No serious adverse events occurred during the study. Mild transient headaches were infrequently reported, which are expected side effects of ATBS. CONCLUSION: Overall, ATBS treatment was highly effective and well-tolerated in individuals with ASD and co-occurring MDD. The findings support the need for a larger, sham-controlled randomized controlled trial to further evaluate efficacy of ATBS in this population.
RESUMEN
Nitrate or nitrite-dependent anaerobic methane oxidation (n-DAMO) is a microbial process that links carbon and nitrogen cycles as a methane sink in many natural environments. This study demonstrates, for the first time, that the nitrite-dependent anaerobic methane oxidation (nitrite-DAMO) process can be stimulated in sewer systems under continuous nitrate dosing for sulfide control. In a laboratory sewer system, continuous nitrate dosing not only achieved complete sulfide removal, but also significantly decreased dissolved methane concentration by â¼50 %. Independent batch tests confirmed the coupling of methane oxidation with nitrate and nitrite reduction, revealing similar methane oxidation rates of 3.68 ± 0.5 mg CH4 L-1 h-1 (with nitrate as electron acceptor) and 3.57 ± 0.4 mg CH4 L-1 h-1 (with nitrite as electron acceptor). Comprehensive microbial analysis unveiled the presence of a subgroup of the NC10 phylum, namely Candidatus Methylomirabilis (n-DAMO bacteria that couples nitrite reduction with methane oxidation), growing in sewer biofilms and surface sediments with relative abundances of 1.9 % and 1.6 %, respectively. In contrast, n-DAMO archaea that couple methane oxidation solely to nitrate reduction were not detected. Together these results indicated the successful enrichment of n-DAMO bacteria in sewerage systems, contributing to approx. 64 % of nitrite reduction and around 50 % of dissolved methane removal through the nitrite-DAMO process, as estimated by mass balance analysis. The occurrence of the nitrite-DAMO process in sewer systems opens a new path to sewer methane emissions.
Asunto(s)
Metano , Nitratos , Nitritos , Oxidación-Reducción , Aguas del Alcantarillado , Metano/metabolismo , AnaerobiosisRESUMEN
Wolfberry (Lycium, of the family Solanaceae) has special nutritional benefits due to its valuable metabolites. Here, 16 wolfberry-specific metabolites were identified by comparing the metabolome of wolfberry with those of six species, including maize, rice, wheat, soybean, tomato and grape. The copy numbers of the riboflavin and phenyllactate degradation genes riboflavin kinase (RFK) and phenyllactate UDP-glycosyltransferase (UGT1) were lower in wolfberry than in other species, while the copy number of the phenyllactate synthesis gene hydroxyphenyl-pyruvate reductase (HPPR) was higher in wolfberry, suggesting that the copy number variation of these genes among species may be the main reason for the specific accumulation of riboflavin and phenyllactate in wolfberry. Moreover, the metabolome-based neighbor-joining tree revealed distinct clustering of monocots and dicots, suggesting that metabolites could reflect the evolutionary relationship among those species. Taken together, we identified 16 specific metabolites in wolfberry and provided new insight into the accumulation mechanism of species-specific metabolites at the genomic level.
RESUMEN
Wastewater treatment contributes substantially to methane (CH4) emissions, yet monitoring and tracing face challenges because the treatment processes are often treated as a "black box". Particularly, despite growing interest, the amount of CH4 carryover and influx from the sewer and its impacts on overall emissions remain unclear. This study quantified CH4 emissions from six wastewater treatment plants (WWTPs) across China, utilizing existing multizonal odor control systems, with a focus on Beijing and Guiyang WWTPs. In the Beijing WWTP, almost 90% of CH4 emissions from the wastewater treatment process were conveyed through sewer pipes, affecting emissions even in the aerobic zone of biological treatment. In the Guiyang WWTP, where most CH4 from the sewer was released at the inlet well, a 24 h online monitoring revealed CH4 fluctuations linked to neighborhood water consumption and a strong correlation to influent COD inputs. CH4 emission factors monitored in six WWTPs range from 1.5 to 13.4 gCH4/kgCODrem, higher than those observed in previous studies using A2O technology. This underscores the importance of considering CH4 influx from sewer systems to avoid underestimation. The odor control system in WWTPs demonstrates its potential as a cost-effective approach for tracing, monitoring, and mitigating CH4.
Asunto(s)
Metano , Aguas del Alcantarillado , Aguas Residuales , Metano/análisis , Aguas Residuales/química , Eliminación de Residuos Líquidos , China , Monitoreo del AmbienteRESUMEN
BACKGROUND: Dental caries in young children is a difficult global oral health problem. In the last decade, China has put a great deal of effort into reducing the prevalence of dental caries. This study, which is part of the China Population Chronic Disease and Nutrition Surveillance 2021, aimed to investigate the prevalence of dental caries among children aged 5 in Shanghai, China, and its associated factors. METHODS: A total of 1281 children aged 5 years from 6 districts in Shanghai were selected by a stratified sampling method. The survey consisted of an oral health questionnaire and an oral health examination. The questionnaire included questions on oral health knowledge, attitudes, and behaviours. The oral health examination used WHO standards. After screening, the data were input and analysed. Chi-square tests and logistic regression analyses were used to study the relevant factors affecting dental caries. RESULTS: The prevalence of dental caries among 1281 children was 51.0%, the dmft index score was 2.46, the Significant Caries Index (SiC) score was 6.39, and the SiC10 score was 10.35. Dental caries experience was related to the frequency of sweet drink consumption, the age of starting tooth brushing, eating habits after brushing, whether the children had received an oral examination provided by the government (p < 0.05), and the mother's education level but was not related to sex, the use of fluoride toothpaste, the frequency of brushing, whether the parents assisted brushing, or the frequency of flossing (p > 0.05). Logistic regression analysis showed that the region of residence, eating after brushing and the age of starting brushing were associated with dental caries. CONCLUSIONS: Dental caries remained prevalent among 5-year-old children in Shanghai, China. Prevention strategies that target the associated factors including region of residence, eating after brushing, and the age of starting brushing should be considered.
Asunto(s)
Caries Dental , Humanos , Preescolar , Caries Dental/epidemiología , Caries Dental/prevención & control , China/epidemiología , Índice CPO , Estudios Transversales , Salud Bucal , PrevalenciaRESUMEN
BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) hold great promise in the treatment of diabetic retinopathy (DR), as evidenced by increasing preclinical and clinical studies. However, the absence of standardized and industrialized clinical-grade donor cells hampers the continued development and large-scale clinical application of MSCs-based therapies for DR. Previously, we have identified a unique population of MSCs generated from a clinical-grade human embryonic stem cell (hESC) line under Good Manufacturing Practice conditions that could be a potential source to address the issues. Here, we investigated the therapeutic potential of the clinical-grade hESC line-derived MSCs (hESC-MSCs) on db/db mice with DR. METHODS: hESC-MSCs were initially characterized by morphological assessment, flow cytometry analysis and trilineage differentiation assays. These cells (5 × 106 cells) were then transplanted intravenously into 12-week-old db/db mice via tail vein, with phosphate-buffered saline transplantation and untreated groups used as controls. The retinal alterations in neural functions and microvascular perfusions, and inflammatory responses in peripheral blood and retina were evaluated at 4 and 6 weeks after transplantation using electroretinography, optical coherence tomography angiography and flow cytometry, respectively. Body weight and fasting blood glucose (FBG) levels were also measured to investigate their systemic implications. RESULTS: Compared with controls, intravenous transplantation of hESC-MSCs could significantly: (i) enhance impaired retinal electroretinography functions (including amplitudes of a-, b-wave and oscillatory potentials) at 4 weeks after transplantation; (ii) alleviate microvascular dysfunctions, especially in the inner retina with significance (including reducing non-perfusion area and increasing vascular area density) at 4 weeks after transplantation; (iii) decrease FBG levels at 4 weeks after transplantation and induce weight loss up to 6 weeks after transplantation and (iv) increase both peripheral blood and retinal interleukin-10 levels at 4 weeks after transplantation and modulate peripheral blood inflammatory cytokines and chemokines levels, such as monocyte chemotactic protein-1, up to 6 weeks after transplantation. CONCLUSIONS: The findings of our study indicated that intravenous transplantation of hESC-MSCs ameliorated retinal neural and microvascular dysfunctions, regulated body weight and FBG and modulated peripheral blood and retinal inflammation responses in a mouse model of DR. These results suggest that hESC-MSCs could be a potentially effective clinical-grade cell source for the treatment of DR.