Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mater Sci Eng C Mater Biol Appl ; 123: 112007, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33812627

RESUMEN

Stent implantation has become one of the most widely used methods for the treatment of cardiovascular diseases. However, endothelial dysfunction and abnormal inflammatory response following implantation may lead to delayed re-endothelialization, resulting in vascular restenosis and stent thrombus. To address the concerns, we constructed nanospindles composed of TiO2 and Ti4Ni2O through hydrothermal treatment of amorphous Ni-Ti-O nanopores anodically grown on NiTi alloy. The results show the treatment can significantly improve hydrophilicity and reduce Ni ion release, essentially independent of hydrothermal duration. The nanospindle surfaces not only promote the expression of endothelial functionality but also activate macrophages to induce a favorable immune response, downregulate pro-inflammatory M1 markers and upregulate pro-healing M2 markers. Moreover, nitric oxide (NO) synthesis, VEGF secretion, and migration of endothelial cells are enhanced after cultured in macrophage conditioned medium. The nanospindles thus are promising as vascular stent coatings to promote re-endothelization.


Asunto(s)
Aleaciones , Células Endoteliales , Inmunidad , Níquel , Propiedades de Superficie , Titanio
2.
Nanoscale ; 11(13): 5920-5931, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30693919

RESUMEN

Inflammatory reactions and the functionality of endothelial cells (ECs) on the surfaces of coronary stents are critical in the prevention of in-stent restenosis and subsequent neoatherosclerosis. However, the interactions between immune cells and ECs on modified coronary stent surfaces have long been underestimated. In the present study, silicon (Si)-doped titania nanotube arrays (TNA-Sis) were obtained via the facile anodization of magnetron-sputtered Ti-Si coatings. The synergetic effects of titania nanotube arrays (TNAs) and chemical cues (Si) on the functionality of macrophages (MΦs)/ECs and their cross-talk were investigated. The results indicated that TNA-Sis specimens, in comparison with TNAs alone, not only promoted the initial vitality of ECs, enhanced the expression of vascular endothelial growth factor (VEGF) and nitric oxide (NO), and activated multiple cell signaling pathways (vWF, PECAM, eNOS), but also induced a favorable immune response through the polarization of MΦs to a pro-healing M2 phenotype via the activation of cell autophagy, resulting in the downregulation of inflammatory reactions. This beneficial immune response further facilitated cross-talk between ECs and MΦs, resulting in profoundly increased functionality of ECs on TNA-Sis surfaces. This study demonstrated that using TNA-Sis surface coatings for coronary stents may be a promising strategy to prevent in-stent restenosis.


Asunto(s)
Comunicación Celular/fisiología , Nanotubos/química , Silicio/química , Titanio/química , Autofagia , Línea Celular , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Medios de Cultivo Condicionados/química , Medios de Cultivo Condicionados/farmacología , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Humanos , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Nanotubos/toxicidad , Óxido Nítrico/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
Mater Sci Eng C Mater Biol Appl ; 97: 715-722, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30678960

RESUMEN

The present work reports on the hydrothermal synthesis of nanosheets on biomedical NiTi alloy in pure water. The results show rhombohedral NiTiO3 nanosheets with thickness of 6 nm can be grown at 200 °C. Hydrothermal treatment enhances the corrosion resistance of the NiTi alloy. 30 min of the treatment significantly reduces Ni ion release, while prolonged hydrothermal time results in increased Ni ion release because of the growth of the nanosheets with large specific surface area. Excitingly, the nanosheets can well support cell growth, which suggests the release amount can be well tolerated. Good corrosion resistance and cytocompatibility combined with large specific surface area render the nanosheets promising as safe and efficient drug carriers of the biomedical NiTi alloy.


Asunto(s)
Aleaciones/química , Materiales Biocompatibles/química , Nanoestructuras/química , Níquel/química , Titanio/química , Aleaciones/farmacología , Animales , Materiales Biocompatibles/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Corrosión , Ratones , Microscopía Confocal , Níquel/metabolismo
4.
Acta Biomater ; 76: 344-358, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29908975

RESUMEN

Coating materials applied for intraosseous implants must be optimized to stimulate osseointegration. Osseointegration is a temporal and spatial physiological process that not only requires interactions between osteogenesis and angiogenesis but also necessitates a favorable immune microenvironment. It is now well-documented that hierarchical nano-micro surface structures promote the long-term stability of implants, the interactions between nano-micro structure and the immune response are largely unknown. Here, we report the effects of microporous titanium (Ti) surfaces coated with nano-hydroxyapatite (HA) produced by micro-arc oxidation and steam-hydrothermal treatment (SHT) on multiple cell behavior and osseointegration. By altering the processing time of SHT it was possible to shift HA structures from nano-particles to nano-rods on the microporous Ti surfaces. Ti surfaces coated with HA nano-particles were found to modulate the inflammatory response resulting in an osteoimmune microenvironment more favorable for osteo-/angio-genesis, most likely via the activation of certain key signaling pathways (TGF-ß, OPG/RANKL, and VEGF). By contrast, Ti surfaces coated with nano-rod shaped HA particles had a negative impact on osteo-/angio-genesis and osteoimmunomodulation. In vivo results further demonstrated that Ti implant surfaces decorated with HA nano-particles can stimulate new bone formation and osseointegration with enhanced interaction between osteocytes and implant surfaces. This study demonstrated that Ti implants with micro-surfaces coated with nano-particle shaped HA have a positive impact on osseointegration. STATEMENT OF SIGNIFICANCE: Osteo-/angio-genesis are of importance during osteointegration of the implants. Recent advances unravel that immune response of macrophages and its manipulated osteoimmunomodulation also exerts a pivotal role to determine the fate of the implant. Surface nano-micro modification has evidenced to be efficient to influence osteogenesis, however, little is known links nano-microstructured surface to immune response, as well the osteoimmunomodulation. This study demonstrates that the nano-particles decorated micro-surface, compared with the nano-rods decorated micro-surface enables osteogenesis and angiogenesis concurrently that has not been investigated previously. This study also unravels that the immune response of macrophages can be manipulated by the nano-micro surface, especially the nano-dimension matters, leading to a differential effect on osteointegration. The additional knowledge obtained from this study may provide foundation and reference for future design of the coating materials for implantable materials.


Asunto(s)
Nanotubos/química , Oseointegración/efectos de los fármacos , Osteoblastos/metabolismo , Titanio , Animales , Línea Celular , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Ratones , Osteoblastos/citología , Propiedades de Superficie , Titanio/química , Titanio/farmacología
5.
Mater Sci Eng C Mater Biol Appl ; 89: 1-7, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29752078

RESUMEN

In the present work, nickel-titanium-oxygen nanopores with different length (0.55-114 µm) were anodically grown on nearly equiatomic nickel-titanium (NiTi) alloy. Length-dependent corrosion behavior, nickel ion (Ni2+) release, cytocompatibility, and antibacterial ability were investigated by electrochemical, analytical chemistry, and biological methods. The results show constructing nanoporous structure on the NiTi alloy improve its corrosion resistance. However, the anodized samples release more Ni2+ than that of the bare NiTi alloy, suggesting chemical dissolution of the nanopores rather than electrochemical corrosion governs the Ni2+ release. In addition, the Ni2+ release amount increases with nanopore length. The anodized samples show good cytocompatibility when the nanopore length is <11 µm. Encouragingly, the length scale covers the one (1-11 µm) that the nanopores showing favorable antibacterial ability. Consequently, the nanopores with length in the range of 1-11 µm are promising as coatings of biomedical NiTi alloy for anti-infection, drug delivery, and other desirable applications.


Asunto(s)
Aleaciones/química , Antibacterianos/química , Materiales Biocompatibles/química , Níquel/metabolismo , Titanio/química , Aleaciones/farmacología , Animales , Antibacterianos/farmacología , Materiales Biocompatibles/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Corrosión , Ratones , Microscopía Confocal , Microscopía Electrónica de Rastreo , Nanoporos , Níquel/química , Staphylococcus aureus/efectos de los fármacos
6.
Biomaterials ; 162: 154-169, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29454274

RESUMEN

A multifaceted coating for hard tissue implants, with favorable osteogenesis, angiogenesis, and osteoimmunomodulation abilities, would be of great value since it could improve osseointegration and alleviate prosthesis loosening. However, to date there are few coatings that fully satisfy these criteria. Herein we describe a microporous TiO2 coating decorated with hydroxyapatite (HA) nanoparticles that is generated by micro-arc oxidation of pure titanium (Ti) and followed annealing. By altering the annealing temperature, it is possible to simultaneously tune the coating's physical (morphology and wettability) and chemical (composites and crystallinity) properties. A coating produced with micro-arc oxidization (MAO) with an annealing temperature of 650 °C (MAO-650) exhibits numerous favorable physicochemical properties, such as hybrid micro-nano morphology, superhydrophilicity, and highly crystalline HA nanoparticles. In vitro experiments reveal that the MAO-650 coating not only supports proliferation and differentiation of both osteoblasts and endothelial cells, but also inhibits the inflammatory response of macrophages and enables a favorable osteoimmunomodulation to facilitate osteo/angio-genesis. In vivo evaluation mirrors these results, and shows that the MAO-650 coating results in ameliorative osseointegration when compared with the pristine MAO coating. These data highlight the profound effect of surface physicochemical properties on the regulation of osteo/angio-genesis and osteoimmunomodulation in the enhancement of osseointegration.


Asunto(s)
Oseointegración/efectos de los fármacos , Titanio/química , Titanio/farmacología , Animales , Línea Celular , Células Cultivadas , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Durapatita/química , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Células RAW 264.7 , Propiedades de Superficie
7.
Mater Sci Eng C Mater Biol Appl ; 71: 93-99, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27987791

RESUMEN

Bacterial infection and loosening of orthopedic implants remain two disastrously postoperative complications. Angiogenesis is critical important to facilitate implant osseointegration in vivo. TiO2 nanotubes arrays (NTAs) with proper dimensions possess good osseointegration ability. Accordingly, the present work incorporated copper (Cu) into TiO2 NTAs (Cu-Ti-O NTAs) to enhance their antibacterial ability and angiogenesis activity, which was realized through anodizing magnetron-sputtered TiCu coatings with different Cu contents on pure titanium (Ti). Our results show ordered Cu-Ti-O NTAs can be produced under proper Cu content (<15.14%) in TiCu coatings. The NTAs possess excellent long-term antibacterial ability against Staphylococcus aureus (S. aureus), which may be ascribed to sustained release of Cu2+. The cytotoxicity of Cu-Ti-O NTAs to endothelial cells (ECs) could be negligible and can even promote cell proliferation as revealed by live/dead staining and MTT. Meanwhile, Cu-Ti-O NTAs can up-regulate nitric oxide (NO) synthesis and vascular endothelial growth factors (VEGF) secretion of ECs on the sample surfaces compared with that of pure TiO2 NTAs (control). Furthermore, the angiogenic activity is also enhanced in ionic extracts of Cu-Ti-O NTAs compared with the control. The excellent long-term antibacterial ability and favorable angiogenic activity render Cu-Ti-O NTAs to be promising implant coatings.


Asunto(s)
Inductores de la Angiogénesis , Antibacterianos , Cobre , Nanotubos/química , Staphylococcus aureus/crecimiento & desarrollo , Titanio , Inductores de la Angiogénesis/química , Inductores de la Angiogénesis/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Línea Celular , Cobre/química , Cobre/farmacología , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacología , Humanos , Titanio/química , Titanio/farmacología
8.
Mater Sci Eng C Mater Biol Appl ; 51: 37-42, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25842105

RESUMEN

Anodization is used to fabricate Ni-Ti-O nanotube (NT) electrodes for non-enzymatic glucose detection. The morphology, microstructure and composition of the materials are characterized by field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Our results show amorphous and highly ordered NTs with diameter of 50nm, length of 800nm, and Ni/Ti ratio (at %) of 0.35 can be fabricated in ethylene glycol electrolyte supplemented with 0.2 wt.% NH4F and 0.5 vol.% H2O at 30°C and 25V for 1h. Electrochemical experiments indicate that at an applied potential of 0.60V vs. Ag/AgCl, the electrode exhibits a linear response window for glucose concentrations from 0.002mM to 0.2mM with a response time of 10s, detection limit of 0.13µM (S/N=3), and sensitivity of 83µAmM(-1)cm(-2). The excellent performance of the electrode is attributed to its large specific area and fast electron transfer between the NT walls. The good electrochemical performance of the Ni-Ti-O NTs as well as their simple and low-cost preparation method make the strategy promising in non-enzymatic glucose detection.


Asunto(s)
Conductometría/instrumentación , Electrodos , Glucosa/análisis , Nanotubos/química , Níquel/química , Titanio/química , Técnicas Biosensibles/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Glucosa/química , Glucosa Oxidasa/química , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Nanotubos/ultraestructura , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
9.
Sci Rep ; 4: 7547, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25520180

RESUMEN

Nickel-titanium-oxide (Ni-Ti-O) nanotube arrays (NTAs) prepared on nearly equiatomic NiTi alloy shall have broad application potential such as for energy storage and biomedicine, but their precise structure control is a great challenge because of the high content of alloying element of Ni, a non-valve metal that cannot form a compact electronic insulating passive layer when anodized. In the present work, we systemically investigated the influence of various anodization parameters on the formation and structure of Ni-Ti-O NTAs and their potential applications. Our results show that well controlled NTAs can be fabricated during relatively wide ranges of the anodization voltage (5-90 V), electrolyte temperature (10-50°C) and electrolyte NH4F content (0.025-0.8 wt%) but within a narrow window of the electrolyte H2O content (0.0-1.0 vol%). Through modulating these parameters, the Ni-Ti-O NTAs with different diameter (15-70 nm) and length (45-1320 nm) can be produced in a controlled manner. Regarding potential applications, the Ni-Ti-O NTAs may be used as electrodes for electrochemical energy storage and non-enzymic glucose detection, and may constitute nanoscaled biofunctional coating to improve the biological performance of NiTi based biomedical implants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...