Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36234042

RESUMEN

Robust edge states of periodic crystals with Dirac points fixed at the corners or centers of the Brillouin zones have drawn extensive attention. Recently, researchers have observed a special edge state associated with Dirac cones degenerated at the high symmetric boundaries of the first irreducible Brillouin zone. These nodal points, characterized by vortex structures in the momentum space, are attributed to the unavailable band crossing protected by mirror symmetry. By breaking the time reversal symmetry with intuitive rotations, valley-like states can be observed in a pair of inequivalent insulators. In this paper, an improved direct inverse design method is first applied to realize the valley-like states. Compared with the conventional strategy, the preparation of transition structures with degeneracy points is skipped. By introducing the quantitative gauge of mode inversion error, insulator pairs are directly obtained without manually tuning the structure with Dirac cone features.

2.
Polymers (Basel) ; 15(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36616372

RESUMEN

In this work, eco-friendly superhydrophobic coatings were prepared by dispersing hydrophobic silica nanoparticles and a waterborne silicone-modified polyurethane dispersion into an ethanol solution, which was free of fluorine and volatile toxic solvents. The effects of the silica content on the hydrophobicity and scratch resistance of the hydrophobic surfaces were investigated by WCA measurements and a sandpaper abrasion test, respectively. The experimental results indicated that when the silica content exceeded 30% by mass, the silica/silicone-modified polyurethane coatings had superhydrophobicity. Meanwhile, the superhydrophobic coatings with a silica content of 30% by mass simultaneously had the optimal mechanical stability. We studied the morphology and roughness of the hydrophobic surfaces with different silica content and attempted to briefly explain the influence mechanism of silica content. Furthermore, anti-icing and oil-water separation experiments were carried out on the superhydrophobic coatings, which exhibited good anti-icing performance and high separation efficiency. The eco-friendly superhydrophobic coating is expected to be applied in the fields of oil-water separation, anti-icing, and self-cleaning, etc.

3.
Polymers (Basel) ; 13(17)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34502879

RESUMEN

The application of fiber-reinforced polymer (FRP) composites is gaining increasing popularity in impact-resistant devices, automotives, biomedical devices and aircraft structures due to their high strength-to-weight ratios and their potential for impact energy absorption. Impact-induced high loading rates can result in significant changes of mechanical properties (e.g., elastic modulus and strength) before strain softening occurs and failure characteristics inside the strain localization zone (e.g., failure mechanisms and fracture energy) for fiber-reinforced polymer composites. In general, these phenomena are called the strain rate effects. The underlying mechanisms of the observed rate-dependent deformation and failure of composites take place among multiple length and time scales. The contributing mechanisms can be roughly classified as: the viscosity of composite constituents (polymer, fiber and interfaces), the rate-dependency of the fracture mechanisms, the inertia effects, the thermomechanical dissipation and the characteristic fracture time. Numerical models, including the viscosity type of constitutive models, rate-dependent cohesive zone models, enriched equation of motion and thermomechanical numerical models, are useful for a better understanding of these contributing factors of strain rate effects of FRP composites.

4.
Nanoscale Res Lett ; 15(1): 74, 2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32266671

RESUMEN

The synergistic effects of surface treatment and interleaf on the interlaminar mechanical properties of glass fiber-aluminum laminates were studied. Aluminum sheets were treated with alkaline etching. Meanwhile, a graphene oxide (GO) interleaf was introduced between the aluminum sheet and the glass fiber-reinforced epoxy composite. Double cantilever beam and end-notched flexure tests were employed to evaluate the interlaminar fracture toughness of the glass fiber-aluminum laminates. The obtained results show that the toughening efficiency of the interleaf is dependent on the aluminum surface characteristics as well as the GO loading. Further comparison reveals that the highest mode-I and mode-II fracture toughnesses are obtained in the specimens with alkali etching treatment and addition of GO interleaf with 0.5 wt% of GO loading, which are 510% and 381% higher in comparison to the plain specimen. Fracture surfaces were observed to further uncover the reinforcement mechanisms.

5.
Sensors (Basel) ; 19(9)2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31083470

RESUMEN

A pulse laser combined LWT technique with a two-stage reconstruction algorithm was proposed to realize rapid damage location, or even the evaluation of damage size for plate-like structures. Since the amplitude of Lamb waves in propagation is highly sensitive to damage, including inside damage, the change of the attenuation coefficient of Lamb waves in the inspection region was used as a damage index to reconstruct damage images. In stage one, the rough area of the damage was identified by a comparison of the amplitude of the testing signal data and reference data (undamaged state). In stage two, the damage image was reconstructed using an inverse approach based on the least-square method. In order to verify the effectiveness of the proposed rapid approach, experiments on an aluminum plate with a non-penetrating notch and a carbon fiber-reinforced plastic laminated plate with internal delamination induced by a low-velocity impact were carried out. The results show that the notch can be detected with accurate location, and the delamination image can be reconstructed successfully.

6.
Ultrasonics ; 96: 34-39, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30947072

RESUMEN

In this work, we propose an asymmetric transmission structure (ATS) for elastic shear vertical (SV) waves in solids, which has been relatively unexplored. The ATS is constituted by a metasurface and a phononic crystal (PC) possessing a directional band gap. While the metasurface aims to redirect the incident wave, the PC acts as a directional filter. The metasurface is composed of a stacked array of composite plates with two connecting parts made of different materials. To examine the performance of the designed ATS, full numerical simulations have been conducted. The numerical results indicate that the proposed ATS offered a relatively broad working frequency band and had a one order of magnitude difference in terms of transmission between the positive and negative incidences. Our study provides an alternative method to control elastic SV waves and could benefit applications in various fields, such as Micro-Electro-Mechanical System (MEMS), in which thin plates are frequently used components.

7.
Nanoscale Res Lett ; 14(1): 114, 2019 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-30927118

RESUMEN

Ti matrix composites reinforced with 1-5 wt% graphene oxide (GO) were prepared by hot-pressed sintering in argon atmosphere. The effect of sintering temperature on the microstructures and mechanical properties of the composite was also evaluated. The results show that TiC nanoparticles were formed in situ as interfacial products via the reaction between Ti and GO during sintering. With increases in GO content and sintering temperature, the amount of TiC increased, improving the mechanical properties of the composites. GO was also partly retained with a lamellar structure after sintering. The composite reinforced with 5 wt% GO exhibited a hardness of 457 HV, 48.4% higher than that of pure Ti at 1473 K. The Ti-2.5 wt% GO composite sintered at 1473 K achieved a maximum yield stress of 1294 MPa, which was 62.7 % higher than that of pure Ti. Further increasing the GO content to 5 wt% led to a slight decrease in yield stress owing to GO agglomeration. The fracture morphology of the composite reinforced with GO exhibited a quasi-cleavage fracture, whereas that of the pure Ti matrix showed a ductile fracture. The main strengthening mechanism included grain refinement, solution strengthening, and dispersion strengthening of TiC and GO.

8.
Nanoscale ; 11(9): 4067-4072, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30778431

RESUMEN

Enhancing thermal energy transport is critical for the applications of 2-dimensional materials. Here, we explored the methods of enhancing the interfacial thermal energy transport across the graphene (GR)/hexagonal boron nitride (h-BN) heterostructure interface, and revealed the enhancement mechanisms of interfacial thermal energy transport by applying non-equilibrium molecular dynamics (NEMD) simulations. The computational results indicated that both doping and interface topography optimization could effectively improve the interfacial thermal conductance (ITC) of the GR/h-BN heterostructure. In particular, the enhancement of the zigzag interface topography led to a much better result than the other methods. Doping and interface topography optimization increased the overlap of the phonon density of states (PDOS). Temperature had a negligible effect on the ITC of the GR/h-BN heterostructure when the temperature exceeded 600 K.

9.
Materials (Basel) ; 11(11)2018 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-30366445

RESUMEN

This paper investigates the propagation of low-frequency S0 mode Lamb waves in plates with quadratic nonlinearity through numerical simulations and experimental measurements. Both numerical and experimental results manifest distinct ultrasonic nonlinear behavior which is mainly presented by the second harmonics. Meanwhile, we find that both the acoustic nonlinearity parameter and dispersion distance show the exponential decay trend with the increase of frequency-thickness. Moreover, the results reveal that the frequency is key to affect the acoustic nonlinearity parameter and dispersion distance with the same frequency-thickness. This study theoretically and experimentally reveals that nonlinear Lamb waves of the low-frequency S0 mode are feasible to quantitatively identify material weak nonlinearity in plates.

10.
Sensors (Basel) ; 18(8)2018 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-30060573

RESUMEN

The symmetric zero-frequency mode induced by weak material nonlinearity during Lamb wave propagation is explored for the first time. We theoretically confirm that, unlike the second harmonic, phase-velocity matching is not required to generate the zero-frequency mode and its signal is stronger than those of the nonlinear harmonics conventionally used, for example, the second harmonic. Experimental and numerical verifications of this theoretical analysis are conducted for the primary S0 mode wave propagating in an aluminum plate. The existence of a symmetric zero-frequency mode is of great significance, probably triggering a revolutionary progress in the field of non-destructive evaluation and structural health monitoring of the early-stage material nonlinearity based on the ultrasonic Lamb waves.

11.
Materials (Basel) ; 10(7)2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28773188

RESUMEN

In this study, a numerical approach-the discontinuous Meshless Local Petrov-Galerkin-Eshelby Method (MLPGEM)-was adopted to simulate and measure material plasticity in an Al 7075-T651 plate. The plate was modeled in two dimensions by assemblies of small particles that interact with each other through bonding stiffness. The material plasticity of the model loaded to produce different levels of strain is evaluated with the Lamb waves of S0 mode. A tone burst at the center frequency of 200 kHz was used as excitation. Second-order nonlinear wave was extracted from the spectrogram of a signal receiving point. Tensile-driven plastic deformation and cumulative second harmonic generation of S0 mode were observed in the simulation. Simulated measurement of the acoustic nonlinearity increased monotonically with the level of tensile-driven plastic strain captured by MLPGEM, whereas achieving this state by other numerical methods is comparatively more difficult. This result indicates that the second harmonics of S0 mode can be employed to monitor and evaluate the material or structural early-stage damage induced by plasticity.

12.
Ultrasonics ; 79: 60-67, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28433810

RESUMEN

Since the identification of micro-cracks in engineering materials is very valuable in understanding the initial and slight changes in mechanical properties of materials under complex working environments, numerical simulations on the propagation of the low frequency S0 Lamb wave in thin plates with randomly distributed micro-cracks were performed to study the behavior of nonlinear Lamb waves. The results showed that while the influence of the randomly distributed micro-cracks on the phase velocity of the low frequency S0 fundamental waves could be neglected, significant ultrasonic nonlinear effects caused by the randomly distributed micro-cracks was discovered, which mainly presented as a second harmonic generation. By using a Monte Carlo simulation method, we found that the acoustic nonlinear parameter increased linearly with the micro-crack density and the size of micro-crack zone, and it was also related to the excitation frequency and friction coefficient of the micro-crack surfaces. In addition, it was found that the nonlinear effect of waves reflected by the micro-cracks was more noticeable than that of the transmitted waves. This study theoretically reveals that the low frequency S0 mode of Lamb waves can be used as the fundamental waves to quantitatively identify micro-cracks in thin plates.

13.
Sensors (Basel) ; 14(11): 20439-50, 2014 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-25356647

RESUMEN

To improve the reliability of a Lamb wave visualization technique and to obtain more information about structural damages (e.g., size and shape), we put forward a new signal processing algorithm to identify damage more clearly in an inspection region. Since the kinetic energy of material particles in a damaged area would suddenly change when ultrasonic waves encounter the damage, the new algorithm embedded in the wave visualization technique is aimed at monitoring the kinetic energy variations of all points in an inspection region to construct a damage diagnostic image. To validate the new algorithm, three kinds of surface damages on the center of aluminum plates, including two non-penetrative slits with different depths and a circular dent, were experimentally inspected. From the experimental results, it can be found that the new algorithm can remarkably enhance the quality of the diagnostic image, especially for some minor defects.

14.
Ultrasonics ; 54(7): 2015-23, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24908541

RESUMEN

Lamb wave tomography (LWT) is a potential and efficient technique for non-destructive tomographic reconstruction of damage images in structural components or materials. A two-stage inverse algorithm proposed by the authors for quickly reconstructing the damage images was applied to hollow cylinders. An aluminum hollow cylinder with an internal surface pit and a Carbon Fiber Reinforced Plastic (CFRP) laminated hollow cylinder with an artificial internal surface damage were used to validate the proposed method. The results show that the present method is capable of successfully reconstructing the images of the above damages in a larger inspection area with much less experimental data compared to some conventional ultrasonic tomography techniques.

15.
Sensors (Basel) ; 14(2): 1902-17, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24463430

RESUMEN

A new wave energy flow (WEF) map concept was proposed in this work. Based on it, an improved technique incorporating the laser scanning method and Betti's reciprocal theorem was developed to evaluate the shape and size of damage as well as to realize visualization of wave propagation. In this technique, a simple signal processing algorithm was proposed to construct the WEF map when waves propagate through an inspection region, and multiple lead zirconate titanate (PZT) sensors were employed to improve inspection reliability. Various damages in aluminum and carbon fiber reinforced plastic laminated plates were experimentally and numerically evaluated to validate this technique. The results show that it can effectively evaluate the shape and size of damage from wave field variations around the damage in the WEF map.

16.
Nanotechnology ; 24(45): 455501, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24121656

RESUMEN

A temperature sensor was fabricated from a polymer nanocomposite with multi-walled carbon nanotube (MWCNT) as nanofiller (i.e., MWCNT/epoxy). The electrical resistance and temperature coefficient of resistance (TCR) of the temperature sensor were characterized experimentally. The effects of temperature (within the range 333-373 K) and MWCNT content (within the range 1-5 wt%) were investigated thoroughly. It was found that the resistance increases with increasing temperature and decreasing MWCNT content. However, the resistance change ratio related to the TCR increases with increasing temperature and MWCNT content. The highest value of TCR (0.021 K(-1)), which was observed in the case of 5 wt% MWCNT, is much higher than those of traditional metals and MWCNT-based temperature sensors. Moreover, the corresponding numerical simulation-conducted to explain the above temperature-dependent piezoresistivity of the nanocomposite temperature sensor-indicated the key role of a temperature-dependent tunneling effect.

17.
Nanoscale Res Lett ; 8(1): 15, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23294669

RESUMEN

In this work, the thermal expansion properties of carbon nanotube (CNT)-reinforced nanocomposites with CNT content ranging from 1 to 15 wt% were evaluated using a multi-scale numerical approach, in which the effects of two parameters, i.e., temperature and CNT content, were investigated extensively. For all CNT contents, the obtained results clearly revealed that within a wide low-temperature range (30°C ~ 62°C), thermal contraction is observed, while thermal expansion occurs in a high-temperature range (62°C ~ 120°C). It was found that at any specified CNT content, the thermal expansion properties vary with temperature - as temperature increases, the thermal expansion rate increases linearly. However, at a specified temperature, the absolute value of the thermal expansion rate decreases nonlinearly as the CNT content increases. Moreover, the results provided by the present multi-scale numerical model were in good agreement with those obtained from the corresponding theoretical analyses and experimental measurements in this work, which indicates that this multi-scale numerical approach provides a powerful tool to evaluate the thermal expansion properties of any type of CNT/polymer nanocomposites and therefore promotes the understanding on the thermal behaviors of CNT/polymer nanocomposites for their applications in temperature sensors, nanoelectronics devices, etc.

18.
Nanoscale ; 4(22): 7250-5, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23281491

RESUMEN

We improved the piezoelectric property of poly(vinylidene fluoride) (PVDF) by employing graphene. The reduced graphene oxide (rGO)­PVDF nanocomposites were prepared by a solution casting method and the rGO contents ranged from 0.0 wt% to 0.2 wt%. To induce the piezoelectric ß-phase crystal structure, the nanocomposite films were drawn in a ratio of 4­5 and polarized by a step-wise poling method. To evaluate the piezoelectric property, the output voltages of the rGO­PVDF nanocomposite films were measured through extensive experimental vibration tests. The experimental results show that the rGO­PVDF nanocomposite film with 0.05 wt% rGO loading possesses the highest output voltage compared with other loadings, which is around 293% of that of the pure PVDF film. Moreover, it can be found that with the increase of the rGO content from 0 wt% to 0.2 wt%, the output voltage tends to have a peak at 0.05 wt%. The main reason for this phenomenon is that a more ß-crystalline phase can be formed at those rGO loadings, as confirmed by XRD and FT-IR spectrum analyses.

19.
Sensors (Basel) ; 11(11): 10691-723, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22346667

RESUMEN

In recent years, nanocomposites based on various nano-scale carbon fillers, such as carbon nanotubes (CNTs), are increasingly being thought of as a realistic alternative to conventional smart materials, largely due to their superior electrical properties. Great interest has been generated in building highly sensitive strain sensors with these new nanocomposites. This article reviews the recent significant developments in the field of highly sensitive strain sensors made from CNT/polymer nanocomposites. We focus on the following two topics: electrical conductivity and piezoresistivity of CNT/polymer nanocomposites, and the relationship between them by considering the internal conductive network formed by CNTs, tunneling effect, aspect ratio and piezoresistivity of CNTs themselves, etc. Many recent experimental, theoretical and numerical studies in this field are described in detail to uncover the working mechanisms of this new type of strain sensors and to demonstrate some possible key factors for improving the sensor sensitivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA