Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 5(1): 18, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017629

RESUMEN

Fluorescence lifetime imaging microscopy (FLIM) is a powerful tool to quantify molecular compositions and study molecular states in complex cellular environment as the lifetime readings are not biased by fluorophore concentration or excitation power. However, the current methods to generate FLIM images are either computationally intensive or unreliable when the number of photons acquired at each pixel is low. Here we introduce a new deep learning-based method termed flimGANE (fluorescence lifetime imaging based on Generative Adversarial Network Estimation) that can rapidly generate accurate and high-quality FLIM images even in the photon-starved conditions. We demonstrated our model is up to 2,800 times faster than the gold standard time-domain maximum likelihood estimation (TD_MLE) and that flimGANE provides a more accurate analysis of low-photon-count histograms in barcode identification, cellular structure visualization, Förster resonance energy transfer characterization, and metabolic state analysis in live cells. With its advantages in speed and reliability, flimGANE is particularly useful in fundamental biological research and clinical applications, where high-speed analysis is critical.


Asunto(s)
Técnicas Citológicas/métodos , Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos , Imagen Molecular/métodos , Algoritmos , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/química , Células HeLa , Humanos
2.
Polymers (Basel) ; 13(18)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34577930

RESUMEN

Here, we aimed to investigate the safety and preliminary efficacy of Kartigen®, a matrix with autologous bone marrow mesenchymal stem cell-derived chondrocyte precursors embedded in atelocollagen. As a surgical graft, Kartigen® was implanted onto the cartilage defects at the weight-bearing site of the medial femoral condyle of the knee. Fifteen patients were enrolled and stratified into two groups, undergoing either Kartigen® implantation (n = 10) or microfracture (control group, n = 5). The primary endpoint was to evaluate the safety of Kartigen® by monitoring the occurrence of adverse events through physician queries, physical examinations, laboratory tests, and radiological analyses for 2 years. There were no infections, inflammations, adhesions, loose body, or tumor formations in the Kartigen®-implanted knees. The preliminary efficacy was assessed using the International Knee Documentation Committee (IKDC) score, visual analog scale, and second-look arthroscopy. The postoperative IKDC scores of the Kartigen® group significantly improved in the 16th week (IKDC = 62.1 ± 12.8, p = 0.025), kept increasing in the first year (IKDC = 78.2 ± 15.4, p < 0.005), and remained satisfactory in the second year (IKDC = 73.6 ± 13.8, p < 0.005), compared to the preoperative condition (IKDC = 47.1 ± 17.0), while the postoperative IKDC scores of the control group also achieved significant improvement in the 28th week (IKDC = 68.5 ± 6.1, p = 0.032) versus preoperative state (IKDC = 54.0 ± 9.1). However, the IKDC scores decreased in the first year (IKDC = 63.5 ± 11.6) as well as in the second year (IKDC = 52.6 ± 16.4). Thirteen patients underwent second-look arthroscopy and biopsy one year after the operation. The Kartigen® group exhibited integration between Kartigen® and host tissue with a smooth appearance at the recipient site, whereas the microfracture group showed fibrillated surfaces. The histological and immunohistochemical analyses of biopsy specimens demonstrated the columnar structure of articular cartilage and existence of collagen type II and glycosaminoglycan mimic hyaline cartilage. This study indicates that Kartigen® is safe and effective in treating cartilage defects.

3.
Bioinformatics ; 38(1): 243-249, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34390568

RESUMEN

MOTIVATION: Motions of transmembrane receptors on cancer cell surfaces can reveal biophysical features of the cancer cells, thus providing a method for characterizing cancer cell phenotypes. While conventional analysis of receptor motions in the cell membrane mostly relies on the mean-squared displacement plots, much information is lost when producing these plots from the trajectories. Here we employ deep learning to classify breast cancer cell types based on the trajectories of epidermal growth factor receptor (EGFR). Our model is an artificial neural network trained on the EGFR motions acquired from six breast cancer cell lines of varying invasiveness and receptor status: MCF7 (hormone receptor positive), BT474 (HER2-positive), SKBR3 (HER2-positive), MDA-MB-468 (triple negative, TN), MDA-MB-231 (TN) and BT549 (TN). RESULTS: The model successfully classified the trajectories within individual cell lines with 83% accuracy and predicted receptor status with 85% accuracy. To further validate the method, epithelial-mesenchymal transition (EMT) was induced in benign MCF10A cells, noninvasive MCF7 cancer cells and highly invasive MDA-MB-231 cancer cells, and EGFR trajectories from these cells were tested. As expected, after EMT induction, both MCF10A and MCF7 cells showed higher rates of classification as TN cells, but not the MDA-MB-231 cells. Whereas deep learning-based cancer cell classifications are primarily based on the optical transmission images of cell morphology and the fluorescence images of cell organelles or cytoskeletal structures, here we demonstrated an alternative way to classify cancer cells using a dynamic, biophysical feature that is readily accessible. AVAILABILITY AND IMPLEMENTATION: A python implementation of deep learning-based classification can be found at https://github.com/soonwoohong/Deep-learning-for-EGFR-trajectory-classification. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Humanos , Femenino , Línea Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células MCF-7 , Transición Epitelial-Mesenquimal/genética
4.
Biomolecules ; 11(7)2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202002

RESUMEN

We demonstrated the safety and efficacy of autologous chondrocyte precursor (CP) cell therapy in repairing Grade 4 cartilage defects of medial femoral condyles. The autologous bone marrow mesenchymal stem cells of each participant were isolated, amplified, and then differentiated into CPs in atelocollagen. Neotissues made of CPs were implanted into cartilage defects with an average cell density of 4.9 ± 2.1 × 106 cells/cm2 through arthrotomy. The knee function was evaluated with the International Knee Documentation Committee (IKDC) subjective knee form. Patients' knee functions significantly improved by the 28th week (IKDC score = 68.3 ± 12.1), relative to the initial functionality before the CP therapy (IKDC score = 46.1 ± 16.4, p-value = 0.0014). Nine of these twelve patients maintained good knee functions for 9 years post-implantation (IKDC score = 69.8 ± 12.3) at levels higher than the pre-implantation values (p-value = 0.0018). Patients were evaluated with MRI and arthroscopy, and the defective sites exhibited a smooth surface without a gap between the implant and host tissue. This study demonstrates that autologous CPs successfully engraft into the host tissue and result in the re-formation of hyaline-like cartilage, thereby improving the impaired knee functions. Most importantly, no adverse event was reported during this long-term follow-up period.


Asunto(s)
Cartílago Articular/efectos de los fármacos , Cartílago Articular/diagnóstico por imagen , Condrocitos/trasplante , Colágeno/administración & dosificación , Fémur/efectos de los fármacos , Fémur/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Cartílago Articular/cirugía , Condrocitos/fisiología , Femenino , Fémur/cirugía , Estudios de Seguimiento , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/efectos de los fármacos , Articulación de la Rodilla/cirugía , Masculino , Persona de Mediana Edad , Factores de Tiempo , Resultado del Tratamiento
5.
ACS Nano ; 14(7): 7927-7939, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32668152

RESUMEN

Here, we present a three-dimensional two-color dual-particle tracking (3D-2C-DPT) technique that can simultaneously localize two spectrally distinct targets in three dimensions with a time resolution down to 5 ms. The dual-targets can be tracked with separation distances from 33 to 250 nm with tracking precisions of ∼15 nm (for static targets) and ∼35 nm (for freely diffusing targets). Since each target is individually localized, a wealth of data can be extracted, such as the relative 3D position, the 2D rotation, and the separation distance between the two targets. Using this technique, we turn a double-stranded DNA (dsDNA)-linked dumbbell-like dimer into a nanoscopic optical ruler to quantify the bending dynamics of nicked or gapped dsDNA molecules in free solution by manipulating the design of dsDNA linkers (1-nick, 3-nt, 6-nt, or 9-nt single-strand gap), and the results show the increase of kon (linear to bent) from 3.2 to 10.7 s-1. The 3D-2C-DPT is then applied to observe translational and rotational motions of the landing of an antibody-conjugated nanoparticle on the plasma membrane of living cells, revealing the reduction of rotations possibly due to interactions with membrane receptors. This study demonstrates that this 3D-2C-DPT technique is a new tool to shed light on the conformational changes of biomolecules and the intermolecular interactions on plasma membrane.


Asunto(s)
Microscopía , Nanopartículas , ADN , Difusión , Movimiento (Física)
6.
ACS Sens ; 5(2): 296-302, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32073836

RESUMEN

While monoclonal antibodies are the fastest-growing class of therapeutic agents, we lack a method that can directly quantify the on- and off-target binding affinities of newly developed therapeutic antibodies in crude cell lysates. As a result, some therapeutic antibody candidates could have a moderate on-target binding affinity but a high off-target binding affinity, which not only gives a reduced efficacy but triggers unwanted side effects. Here, we report a single-molecule counting method that precisely quantifies antibody-bound receptors, free receptors, and unbound antibodies in crude cell lysates, termed digital receptor occupancy assay (DRO). Compared to the traditional flow cytometry-based binding assay, DRO assay enables direct and digital quantification of the three molecular species in solution without the additional antibodies for competitive binding. When characterizing the therapeutic antibody, cetuximab, using DRO assay, we found the on-target binding ratio to be 65% and the binding constant (Kd) to be 2.4 nM, while the off-target binding causes the binding constant to decrease by 0.3 nM. Other than cultured cells, the DRO assay can be performed on tumor mouse xenograft models. Thus, DRO is a simple and highly quantitative method for cell-based antibody binding analysis which can be broadly applied to screen and validate new therapeutic antibodies.


Asunto(s)
Anticuerpos/uso terapéutico , Afinidad de Anticuerpos/fisiología , Animales , Anticuerpos/farmacología , Humanos , Ratones
7.
Cancers (Basel) ; 11(12)2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31805710

RESUMEN

Advanced prostate cancer is a very heterogeneous disease reflecting in diverse regulations of oncogenic signaling pathways. Aberrant spatial dynamics of epidermal growth factor receptor (EGFR) promote their dimerization and clustering, leading to constitutive activation in oncogenesis. The EphB2 and Src signaling pathways are associated with the reorganization of the cytoskeleton leading to malignancy, but their roles in regulating EGFR dynamics and activation are scarcely reported. Using single-particle tracking techniques, we found that highly phosphorylated EGFR in the advanced prostate cancer cell line, PC3, was associated with higher EGFR diffusivity, as compared with LNCaP and less aggressive DU145. The increased EGFR activation and biophysical dynamics were consistent with high proliferation, migration, and invasion. After performing single-cell RNA-seq on prostate cancer cell lines and circulating tumor cells from patients, we identified that upregulated gene expression in the EphB2 and Src pathways are associated with advanced malignancy. After dasatinib treatment or siRNA knockdowns of EphB2 or Src, the PC3 cells exhibited significantly lower EGFR dynamics, cell motility, and invasion. Partial inhibitory effects were also found in DU145 cells. The upregulation of parts of the EphB2 and Src pathways also predicts poor prognosis in the prostate cancer patient cohort of The Cancer Genome Atlas. Our results provide evidence that overexpression of the EphB2 and Src signaling pathways regulate EGFR dynamics and cellular aggressiveness in some advanced prostate cancer cells.

8.
J Am Chem Soc ; 141(40): 15747-15750, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31509386

RESUMEN

Single-molecule detection enables direct characterization of annealing/melting kinetics of nucleic acids without the need for synchronization of molecular states, but the current experiments are not carried out in a native cellular context. Here we describe an integrated 3D single-molecule tracking and lifetime measurement method that can follow individual DNA molecules diffusing inside a mammalian cell and observe multiple annealing and melting events on the same molecules. By comparing the hybridization kinetics of the same DNA strand in vitro, we found the association constants can be 13- to 163-fold higher in the molecular crowding cellular environment.


Asunto(s)
ADN/química , Conformación de Ácido Nucleico , Hibridación de Ácido Nucleico/métodos , Imagen Individual de Molécula/métodos , Algoritmos , Difusión , Cinética , Cadenas de Markov , Transición de Fase , Imagen Individual de Molécula/instrumentación , Soluciones , Temperatura , Factores de Tiempo
9.
Sci Rep ; 9(1): 3395, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30833579

RESUMEN

Derailed transmembrane receptor trafficking could be a hallmark of tumorigenesis and increased tumor invasiveness, but receptor dynamics have not been used to differentiate metastatic cancer cells from less invasive ones. Using single-particle tracking techniques, we  developed a phenotyping asssay named Transmembrane Receptor Dynamics (TReD), studied the dynamics of epidermal growth factor receptor (EGFR) in seven breast epithelial cell lines and developed a phenotyping assay named Transmembrane Receptor Dynamics (TReD). Here we show a clear evidence that increased EGFR diffusivity and enlarged EGFR confinement size in the plasma membrane (PM) are correlated with the enhanced metastatic potential in these cell lines. By comparing the TReD results with the gene expression profiles, we found a clear negative correlation between the EGFR diffusivities and the breast cancer luminal differentiation scores (r = -0.75). Upon the induction of epithelial-mesenchymal transition (EMT), EGFR diffusivity significantly increased for the non-tumorigenic MCF10A (99%) and the non-invasive MCF7 (56%) cells, but not for the highly metastatic MDA-MB-231 cell. We believe that the reorganization of actin filaments during EMT modified the PM structures, causing the receptor dynamics to change. TReD can thus serve as a new biophysical marker to probe the metastatic potential of cancer cells and even to monitor the transition of metastasis.


Asunto(s)
Neoplasias de la Mama/metabolismo , Receptores ErbB/metabolismo , Actinas/metabolismo , Neoplasias de la Mama/genética , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Transición Epitelial-Mesenquimal/fisiología , Receptores ErbB/genética , Femenino , Técnica del Anticuerpo Fluorescente , Regulación Neoplásica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos
10.
Biomed Opt Express ; 10(2): 584-599, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30800501

RESUMEN

Deep in vivo imaging of vasculature requires small, bright, and photostable fluorophores suitable for multiphoton microscopy (MPM). Although semiconducting polymer dots (pdots) are an emerging class of highly fluorescent contrast agents with favorable advantages for the next generation of in vivo imaging, their use for deep MPM has never before been demonstrated. Herein, we characterize the multiphoton properties of three pdot variants and perform deep in vivo MPM imaging of cortical rodent microvasculature. We find pdot brightness exceeds conventional fluorophores, including quantum dots, and their broad multiphoton absorption spectrum permits imaging at wavelengths better-suited for biological imaging and confers compatibility with a range of longer excitation wavelengths. This results in substantial improvements in signal-to-background ratio (>3.5-fold) and greater cortical imaging depths (z = 1,300 µm). Ultimately, pdots are a versatile tool for MPM due to their extraordinary brightness and broad absorption, enabling interrogation of deep structures in vivo.

11.
Chem Commun (Camb) ; 55(4): 462-465, 2019 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-30547174

RESUMEN

While NanoCluster Beacon (NCB) is a versatile molecular probe, it suffers from a low target-specific signal issue due to impurities. Here we show that adding a "blocker" strand to the reaction can effectively block the nonfunctional probes and enhance the target-specific signal by 14 fold at a 0.1 target/probe ratio.

12.
Biosens Bioelectron ; 117: 97-103, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29890396

RESUMEN

Protein expression level is critically related to the cell physiological function. However, current methodologies such as Western blot (WB) and Immunohistochemistry (IHC) in analyzing the protein level are rather semi-quantitative and without the information of actual protein concentration. We have developed a microfluidic technique termed a "flow-proteometric platform for analyzing protein concentration (FAP)" that can measure the concentration of a target protein in cells or tissues without the requirement of a calibration standard, e.g., the purified target molecules. To validate our method, we tested a number of control samples with known target protein concentrations and showed that the FAP measurement resulted in concentrations that well matched the actual concentrations in the control samples (coefficient of determination [R2], 0.998), demonstrating a dynamic range of concentrations from 0.13 to 130 pM of a detection for 2 min. We successfully determined a biomarker protein (for predicting the treatment response of cancer immune check-point therapy) PD-L1 concentration in cancer cell lines (HeLa PD-L1 and MDA-MB-231) and breast cancer patient tumor tissues without any prior process of sample purification and standard line construction. Therefore, FAP is a simple, faster, and reliable method to measure the protein concentration in cells and tissues, which can support the conventional methods such as WB and IHC to determine the actual protein level.


Asunto(s)
Antígeno B7-H1/análisis , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Proteómica , Neoplasias de la Mama/patología , Línea Celular Tumoral , Células HeLa , Humanos , Límite de Detección
13.
Cancer Cell ; 33(2): 187-201.e10, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29438695

RESUMEN

Protein glycosylation provides proteomic diversity in regulating protein localization, stability, and activity; it remains largely unknown whether the sugar moiety contributes to immunosuppression. In the study of immune receptor glycosylation, we showed that EGF induces programmed death ligand 1 (PD-L1) and receptor programmed cell death protein 1 (PD-1) interaction, requiring ß-1,3-N-acetylglucosaminyl transferase (B3GNT3) expression in triple-negative breast cancer. Downregulation of B3GNT3 enhances cytotoxic T cell-mediated anti-tumor immunity. A monoclonal antibody targeting glycosylated PD-L1 (gPD-L1) blocks PD-L1/PD-1 interaction and promotes PD-L1 internalization and degradation. In addition to immune reactivation, drug-conjugated gPD-L1 antibody induces a potent cell-killing effect as well as a bystander-killing effect on adjacent cancer cells lacking PD-L1 expression without any detectable toxicity. Our work suggests targeting protein glycosylation as a potential strategy to enhance immune checkpoint therapy.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Receptor de Muerte Celular Programada 1/inmunología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/inmunología , Animales , Línea Celular Tumoral , Femenino , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Ratones Endogámicos BALB C , N-Acetilglucosaminiltransferasas/efectos de los fármacos , N-Acetilglucosaminiltransferasas/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo
14.
Clin Neurol Neurosurg ; 165: 21-23, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29289916

RESUMEN

BACKGROUND: Dopa-responsive dystonia (DRD) is a clinical syndrome characterized by early onset dystonia and a dramatic response to relatively low doses of levodopa. The autosomal dominant DRD is caused by mutations in the gene coding GTP cyclohydrolase 1 (GCH1), the enzyme that catalyzes the first step in the biosynthesis of tetrahydrobiopterin. We herein report a novel gene mutation causally links to DRD. SUBJECT AND METHODS: A 23-year-old woman, presented with a history of gait abnormality and leg dystonia at age 15. Her symptoms were worsened especially in recent 2 years prior to visiting neurological clinic. In view of typical diurnal variation of dystonia, a therapeutic trial with levodopa was given and there was a dramatic response. Hence, a diagnosis of DRD was tentatively made. In addition, her father has leg dystonia since his 14 years old with leg tremor. Her 2 uncles and probably her 2 grandaunts also have limbs tremor. Genetic analysis by using PCR-direct sequencing revealed a novel point mutation (c.263G>T: p. Arg88Leu) in GCH1, including her father and asymptomatic eldest sister. CONCLUSION: We here report a Taiwanese family afflicted with DRD due to a novel missense mutation of the GCH1. The clinical features are considerably variable within the family. The findings extend the genotypic and clinical spectrum of DRD.


Asunto(s)
Trastornos Distónicos/tratamiento farmacológico , Trastornos Distónicos/genética , GTP Ciclohidrolasa/genética , Levodopa/uso terapéutico , Mutación Missense/genética , Pueblo Asiatico , Trastornos Distónicos/diagnóstico , Femenino , Genotipo , Humanos , Linaje , Resultado del Tratamiento , Adulto Joven
15.
Biomaterials ; 155: 13-24, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29156422

RESUMEN

The cells of the vascular system are highly sensitive to biophysical cues from their local cellular microenvironment. To engineer improved materials for vascular devices and delivery of cell therapies, a key challenge is to understand the mechanisms that cells use to sense biophysical cues from their environment. Syndecans are heparan sulfate proteoglycans (HSPGs) that consist of a protein core modified with heparan sulfate glycosaminoglycan chains. Due to their presence on the cell surface and their interaction with cytoskeletal and focal adhesion associated molecules, cell surface proteoglycans are well poised to serve as mechanosensors of the cellular microenvironment. Nanotopological cues have become recognized as major regulators of cell growth, migration and phenotype. We hypothesized that syndecan-1 could serve as a mechanosensor for nanotopological cues and can mediate the responsiveness of vascular smooth muscle cells to nanoengineered materials. We created engineered substrates made of polyurethane acrylate with nanogrooves using ultraviolet-assisted capillary force lithography. We cultured vascular smooth muscle cells with knockout of syndecan-1 on engineered substrates with varying compliance and nanotopology. We found that knockout of syndecan-1 reduced alignment of vascular smooth muscle cells to the nanogrooves under inflammatory treatments. In addition, we found that loss of syndecan-1 increased nuclear localization of Yap/Taz and phospho-Smad2/3 in response to nanogrooves. Syndecan-1 knockout vascular smooth muscle cells also had elevated levels of Rho-associated protein kinase-1 (Rock1), leading to increased cell stiffness and an enhanced contractile state in the cells. Together, our findings support that syndecan-1 knockout leads to alterations in mechanosensing of nanotopographical cues through alterations of in rho-associated signaling pathways, cell mechanics and mediators of the Hippo and TGF-ß signaling pathways.


Asunto(s)
Sindecano-1/química , Técnicas Biosensibles , Proteoglicanos de Heparán Sulfato/química , Músculo Liso Vascular/metabolismo , Transducción de Señal , Sindecano-1/metabolismo , Factor de Crecimiento Transformador beta/química , Factor de Crecimiento Transformador beta/metabolismo
16.
J Am Chem Soc ; 139(20): 7110-7116, 2017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28463488

RESUMEN

High-resolution melting (HRM) analysis of DNA is a closed-tube single-nucleotide polymorphism (SNP) detection method that has shown many advantages in point-of-care diagnostics and personalized medicine. While recently developed melting probes have demonstrated significantly improved discrimination of mismatched (mutant) alleles from matched (wild-type) alleles, no effort has been made to design a simple melting probe that can reliably distinguish all four SNP alleles in a single experiment. Such a new probe could facilitate the discovery of rare genetic mutations at lower cost. Here we demonstrate that a melting probe embedded with a single locked thymidine monomer (tL) can reliably differentiate the four SNP alleles by four distinct melting temperatures (termed the "4Tm probe"). This enhanced discriminatory power comes from the decreased melting temperature of the tL·C mismatched hybrid as compared to that of the t·C mismatched hybrid, while the melting temperatures of the tL-A, tL·G and tL·T hybrids are increased or remain unchanged as compared to those of their canonical counterparts. This phenomenon is observed not only in the HRM experiments but also in the molecular dynamics simulations.


Asunto(s)
Sondas de ADN/química , Oligonucleótidos/química , Polimorfismo de Nucleótido Simple/genética , Timidina/química , Temperatura de Transición , Alelos , Simulación de Dinámica Molecular
17.
Nanoscale ; 9(17): 5664-5670, 2017 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-28422238

RESUMEN

Single-molecule measurements of DNA hybridization kinetics are mostly performed on a surface or inside a trap. Here we demonstrate a time-resolved, 3D single-molecule tracking (3D-SMT) method that allows us to follow a freely diffusing ssDNA molecule in solution for hundreds of milliseconds or even seconds and observe multiple annealing and melting events taking place on the same molecule. This is achieved by combining confocal-feedback 3D-SMT with time-domain fluorescence lifetime measurement, where fluorescence lifetime serves as the indicator of hybridization. With sub-diffraction-limit spatial resolution in molecular tracking and 15 ms temporal resolution in monitoring the change of reporter's lifetime, we have demonstrated a full characterization of annealing rate (kon = 5.13 × 106 M-1 s-1), melting rate (koff = 9.55 s-1), and association constant (Ka = 0.54 µM-1) of an 8 bp duplex model system diffusing at 4.8 µm2 s-1. As our method completely eliminates the photobleaching artifacts and diffusion interference, our kon and koff results well represent the real kinetics in solution. Our binding kinetics measurement can be carried out in a low signal-to-noise ratio condition (SNR ≈ 1.4) where ∼130 recorded photons are sufficient for a lifetime estimation. Using a population-level analysis, we can characterize hybridization kinetics over a wide range (0.5-125 s-1), even beyond the reciprocals of the lifetime monitoring temporal resolution and the average track duration.


Asunto(s)
ADN de Cadena Simple/análisis , Hibridación de Ácido Nucleico , Difusión , Cinética , Nanotecnología
18.
Artículo en Inglés | MEDLINE | ID: mdl-29576887

RESUMEN

Two-color multiphoton microscopy through wavelength mixing of synchronized lasers has been shown to increase the spectral window of excitable fluorophores without the need for wavelength tuning. However, most currently available dual output laser sources rely on the costly and complicated optical parametric generation approach. In this report, we detail a relatively simple and low cost diamond Raman laser pumped by a ytterbium fiber amplifier emitting at 1055 nm, which generates a first Stokes emission centered at 1240 nm with a pulse width of 100 fs. The two excitation wavelengths of 1055 and 1240 nm, along with the effective two-color excitation wavelength of 1140 nm, provide an almost complete coverage of fluorophores excitable within the range of 1000-1300 nm. When compared with 1055 nm excitation, two-color excitation at 1140 nm offers a 90% increase in signal for many far-red emitting fluorescent proteins (for example, tdKatushka2). We demonstrate multicolor imaging of tdKa-tushka2 and Hoechst 33342 via simultaneous two-color two-photon, and two-color three-photon microscopy in engineered 3D multicellular spheroids. We further discuss potential benefits and applications for two-color three-photon excitation. In addition, we show that this laser system is capable of in vivo imaging in mouse cortex to nearly 1 mm in depth with two-color excitation.

19.
Biophys J ; 111(10): 2214-2227, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27851944

RESUMEN

Whereas important discoveries made by single-particle tracking have changed our view of the plasma membrane organization and motor protein dynamics in the past three decades, experimental studies of intracellular processes using single-particle tracking are rather scarce because of the lack of three-dimensional (3D) tracking capacity. In this study we use a newly developed 3D single-particle tracking method termed TSUNAMI (Tracking of Single particles Using Nonlinear And Multiplexed Illumination) to investigate epidermal growth factor receptor (EGFR) trafficking dynamics in live cells at 16/43 nm (xy/z) spatial resolution, with track duration ranging from 2 to 10 min and vertical tracking depth up to tens of microns. To analyze the long 3D trajectories generated by the TSUNAMI microscope, we developed a trajectory analysis algorithm, which reaches 81% segment classification accuracy in control experiments (termed simulated movement experiments). When analyzing 95 EGF-stimulated EGFR trajectories acquired in live skin cancer cells, we find that these trajectories can be separated into three groups-immobilization (24.2%), membrane diffusion only (51.6%), and transport from membrane to cytoplasm (24.2%). When EGFRs are membrane-bound, they show an interchange of Brownian diffusion and confined diffusion. When EGFRs are internalized, transitions from confined diffusion to directed diffusion and from directed diffusion back to confined diffusion are clearly seen. This observation agrees well with the model of clathrin-mediated endocytosis.


Asunto(s)
Receptores ErbB/metabolismo , Imagenología Tridimensional , Microscopía , Algoritmos , Línea Celular Tumoral , Membrana Celular/metabolismo , Citoplasma/metabolismo , Humanos , Transporte de Proteínas
20.
Artículo en Inglés | MEDLINE | ID: mdl-27660404

RESUMEN

In the past two decades significant advances have been made in single-molecule detection, which enables the direct observation of single biomolecules at work in real time and under physiological conditions. In particular, the development of single-molecule tracking (SMT) microscopy allows us to monitor the motion paths of individual biomolecules in living systems, unveiling the localization dynamics and transport modalities of the biomolecules that support the development of life. Beyond the capabilities of traditional camera-based tracking techniques, state-of-the-art SMT microscopies developed in recent years can record fluorescence lifetime while tracking a single molecule in the 3D space. This multiparameter detection capability can open the door to a wide range of investigations at the cellular or tissue level, including identification of molecular interaction hotspots and characterization of association/dissociation kinetics between molecules. In this review, we discuss various SMT techniques developed to date, with an emphasis on our recent development of the next generation 3D tracking system that not only achieves ultrahigh spatiotemporal resolution but also provides sufficient working depth suitable for live animal imaging. We also discuss the challenges that current SMT techniques are facing and the potential strategies to tackle those challenges.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...