Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Cancer Res Clin Oncol ; 150(4): 202, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630320

RESUMEN

PURPOSE: Choroidal melanoma (CM), a kind of malignant tumor, is the main type of Uveal melanoma and one half of CM patients develop metastases. As a member of Eph/ephrin pathway that plays vital role in tumors, EphrinA3 (EFNA3) has been proved to promote tumorigenesis in many tumors. But the effect of EFNA3 in CM has not been studied yet. Through inhibiting angiogenesis, inducing apoptosis and autophagy and so on, Artesunate (ART) plays a key anti-tumor role in many tumors, including CM. However, the exact mechanisms of anti-tumor in CM remain unclear. METHODS: The UALCAN and TIMER v2.0 database analyzed the role of EFNA3 in CM patients. Quantitative real time polymerase chain reaction (qPCR) and Western blot were used to detect the expression of EFNA3 in CM. The growth ability of CM was tested by clonogenic assay and Cell counting kit-8 assay, and the migration ability using Transwell assay. RESULTS: Our results found EFNA3 boosted CM cells' growth and migration through activating Stat3/Akt signaling pathway, while ART inhibited the tumor promoting effect of CM via downregulating EFNA3. In xenograft tumor model, EFNA3 knockdown and ART significantly inhibited tumor growth. CONCLUSION: EFNA3 could be a valuable prognostic factor in CM.


Asunto(s)
Melanoma , Neoplasias de la Úvea , Humanos , Animales , Melanoma/tratamiento farmacológico , Melanoma/genética , Artesunato/farmacología , Proteínas Proto-Oncogénicas c-akt , Carcinogénesis , Transformación Celular Neoplásica , Modelos Animales de Enfermedad , Transducción de Señal
2.
Opt Express ; 32(5): 7682-7696, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38439444

RESUMEN

We investigate the pulse evolution and energy conservation condition at the temporal boundary under third-order dispersion. When the fundamental soliton crosses the temporal boundary and forms two reflected pulses and one transmitted pulse, the power of the transmitted pulse first increases and then decreases as the incident spectrum shifts toward the blue side. If the transmitted spectrum lies in the anomalous group-velocity dispersion region, second-order soliton is formed and dispersive wave is radiated. We present a modified phase-matching condition to predict the resonance frequencies. The predicted results are in good agreement with the results obtained by numerically solving the nonlinear Schrödinger equation.

3.
Int J Ophthalmol ; 17(2): 304-310, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38371263

RESUMEN

AIM: To observe the therapeutic effect of conbercept on diabetic macular edema (DME) complicated with diabetic nephropathy (DN). METHODS: In this retrospective study, 54 patients (54 eyes) that diagnosed as DME from January 2017 to October 2021 were collected. The patients were divided into two groups: DME patients with DN (25 eyes), and DME patients without DN (29 eyes). General conditions were collected before treatment, laboratory tests include fasting blood glucose, HbA1c, microalbumin/creatinine, serum creatinine. Optical coherence tomography (OCT) was used to check the ellipsoidal zone (EZ) and external limiting membrane (ELM) integrity. Central macular thickness (CMT), best corrected visual acuity (BCVA), and retinal hyperreflective foci (HF) as well as numbers of injections were recorded. RESULTS: There were significant differences between fasting blood glucose, HbA1c, serum creatinine, urinary microalbumin/creatinine, and estimated glomerular filtration rate (eGFR) between the two groups (all P<0.05). EZ and ELM continuity in the DME+DN group was worse than that in the DME group (P<0.05). BCVA (logMAR) in the DME group was significantly better than that in the DME+DN group at the same time points during treatment (all P<0.05). CMT and HF values were significantly higher in the DME+DN group than that in the DME group at the all time points (all P<0.05) and significantly decreased in both groups with time during treatment. At 6mo after treatment, the mean number of injections in the DME+DN and DME group was 4.84±0.94 and 3.79±0.86, respectively. CONCLUSION: Conbercept has a significant effect in short-term treatment of DME patients with or without DN, and can significantly ameliorate BCVA, CMT and the number of HF, treatment efficacy of DME patients without DN is better than that of DME patients with DN.

4.
Faraday Discuss ; 233(0): 222-231, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-34889917

RESUMEN

Electrochemical (EC) measurements of dynamic nanoparticle collisions on a support electrode provide a powerful approach to study the electrical properties of interfacial molecules self-assembled on the electrode surface. By introducing a special cage-shaped macrocyclic molecule, cucurbit[7]uril (CB7), onto a gold nanoelectrode surface, we show that the dynamic interactions between CB7 and the colliding nanoparticles can be real-time monitored via the appearance of distinct EC current switching signals. When a guest molecule is included in the CB7 cavity, the changed host-guest chemistry can be probed via the amplitude change of the EC current signals. In addition, different guest molecules can be recognized by CB7 on the nanoelectrode surface, giving rise to distinguishable current jump signals for different host-guest systems. Remarkably, two well-defined current states are observed in the EC measurements of the CB7-ferrocene complex, indicating two orientation geometries of ferrocene inside the CB7 cavity can be resolved in this EC sensing platform. This work demonstrates an effective approach for studying the dynamics of host-guest chemistry at the liquid-solid interface and sheds light on a convenient EC sensor for the recognition of target molecules with the aid of CB7.

5.
Small ; 17(36): e2101911, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34292668

RESUMEN

Creating single-molecule junctions with a long-lived lifetime at room temperature is an open challenge. Finding simple and efficient approaches to increase the durability of single-molecule junction is also of practical value in molecular electronics. Here it is shown that a flexible gold-coated nanopipette electrode can be utilized in scanning tunneling microscope (STM) break-junction measurements to efficiently enhance the stability of molecular junctions by comparing with the measurements using conventional solid gold probes. The stabilizing effect of the flexible electrode displays anchor group dependence, which increases with the binding energy between the anchor group and gold. An empirical model is proposed and shows that the flexible electrode could promote stable binding geometries at the gold-molecule interface and slow down the junction breakage caused by the external perturbations, thereby extending the junction lifetime. Finally, it is demonstrated for the first time that the internal conduit of the flexible STM tip can be utilized for the controlled molecule delivery and molecular junction formation.


Asunto(s)
Electrónica , Nanotecnología , Electrodos , Oro
6.
Chem Commun (Camb) ; 56(94): 14789-14792, 2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33118551

RESUMEN

Revealing the electronic structure of organic emitting molecules is instructive for tuning the electron-hole balance, one of the key factors in regulating the organic light emitting diode (OLED) performance. Herein, we introduced single molecule conductance measurement (SMCM) technology to probe the conductance of three-model emitting molecules on the Au surface, finding that their hole transporting ability across the metal-molecule interface can be suppressed after electron-withdrawing arms are connected to the center component. This observation would benefit the electron-hole balance of the film in large scale OLED devices whose holes are excessively relative to electrons. I-V modeling reveals that the conductance decrease between molecules is owing to the reduced metal-molecule coupling rather than the impaired energy level alignment. The electronic structure variation between molecules could also be revealed by photophysical measurement, electrochemical analysis, and density functional theory (DFT) simulations, which give supportive evidence of the SMCM result.

7.
Nanoscale ; 12(32): 17103-17112, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32785409

RESUMEN

In recent years, surface enhanced Raman spectroscopy (SERS) has emerged as a prominent tool for probing molecular interaction and reaction with single-molecule sensitivity. Here we use SERS to investigate the dynamic changes of the cucurbit[7]uril (CB[7]) based plasmonic molecular junctions in solution, which are spontaneously formed by the adsorption of gold nanoparticles (GNPs) at the CB[7] modified gold nanoelectrode (GNE) surface. The typical fingerprint Raman peaks of CB[7] are very weak in the SERS spectra. However, chemically enhanced peaks are prominent in the spectra due to the charge transfer across the metal-molecule interface through specific noncovalent interactions between the gold atoms and CB[7] or its guest molecule. We first investigated the selectively enhanced and greatly shifted C[double bond, length as m-dash]O peak of CB[7] in the SERS spectra. Based on the bias-dependent changes of the C[double bond, length as m-dash]O peak, we found the gold-carbonyl interaction was strengthened by the positive bias applied to the GNE, resulting in stable CB[7] junctions. Next, we found the CB[7] junction could also be stabilized by the inclusion of a guest molecule amino-ferrocene, attributed to the interactions between gold adatoms and the cyclopentadienyl ring of the guest molecule. Because this interaction is sensitive to the orientation of the guest molecule in the cavity, we revealed the rotational motion of a guest molecule inside the CB[7] cavity based on the dynamic spectral changes of the cyclopentadienyl ring peak.

8.
Chem Commun (Camb) ; 55(57): 8325-8328, 2019 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-31257366

RESUMEN

The through-space conductance of individual molecules is supposed to improve the macroscopic carrier movement, but the most widely acclaimed through-space conductance channel just existed in sufficiently close π-π stacked benzene rings. As a breakthrough to this primary cognition, additional conducting channels were confirmed to exist in non-strict face-to-face aligned thiophenes or phenyl-thiophene in BDT derivatives for the first time.

9.
Analyst ; 144(17): 5037-5047, 2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31290857

RESUMEN

As the information in DNA is of practical value for clinical diagnosis, it is important to develop efficient and rapid methods for DNA detection. In the past decades, nanopores have been extensively explored for DNA detection due to their low cost and high efficiency. As a sub-group of the solid-state nanopore, nanopipettes exhibit great potential for DNA detection which is ascribed to their stability, ease of fabrication and good compatibility with other technologies, compared with biological and traditional solid-state nanopores. Herein, the review systematically summarizes the recent progress in DNA detection with nanopipettes and highlights those studies dedicated to improve the performance of DNA detection using nanopipettes through different approaches, including reducing the rate of DNA translocation, improving the spatial resolution of sensing nanopipettes, and controlling DNA molecules through novel techniques. Besides, some new perspectives of the integration of nanopipettes with other technologies are reviewed.


Asunto(s)
ADN/análisis , Técnicas Electroquímicas/instrumentación , Nanoporos , Técnicas Electroquímicas/métodos
10.
Sci Rep ; 6: 29907, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27443692

RESUMEN

One-dimensional zinc oxide nanorods array exhibit excellent electron mobility and thus hold great potential as photoanode for photoelelctrochemical water splitting. However, the poor absorption of visible light and the prominent surface recombination hider the performance improvement. In this work, Au nanoparticles and aluminium oxide were deposited onto the surface of ZnO nanorods to improve the PEC performance. The localized surface plasmon resonance of Au NPs could expand the absorption spectrum to visible region. Simultaneously, the surface of passivation with Au NPs and Al2O3 largely suppressed the photogenerated electron-hole recombination. As a result, the optimal solar-to-hydrogen efficiency of ZnO/Au/Al2O3 with 5 cycles was 6.7 times that of pristine ZnO, ascribed to the synergistic effect of SPR and surface passivation. This research reveals that the synergistic effect could be used as an important method to design efficient photoanodes for photoelectrochemical devices.

11.
ACS Appl Mater Interfaces ; 8(9): 6137-43, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26872101

RESUMEN

Strain-induced piezoelectric potential (piezopotential) within wurtzite-structured ZnO can engineer the energy-band structure at a contact or a junction and, thus, enhance the performance of corresponding optoelectronic devices by effectively tuning the charge carriers' separation and transport. Here, we report the fabrication of a flexible self-powered ZnO/Spiro-MeOTAD hybrid heterojunction ultraviolet photodetector (UV PD). The obtained device has a fast and stable response to the UV light illumination at zero bias. Together with responsivity and detectivity, the photocurrent can be increased about 1-fold upon applying a 0.753% tensile strain. The enhanced performance can be attributed to more efficient separation and transport of photogenerated electron-hole pairs, which is favored by the positive piezopotential modulated energy-band structure at the ZnO-Spiro-MeOTAD interface. This study demonstrates a promising approach to optimize the performance of a photodetector made of piezoelectric semiconductor materials through straining.

12.
Small ; 12(2): 245-51, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26618499

RESUMEN

A CdS/reduced graphene oxide (RGO)/ZnO nanowire array (NWAs) heterostructure is designed, which exhibits enhanced photoelectrochemical (PEC) activity compared to pure ZnO, RGO/ZnO, and CdS/ZnO. The enhancement can be attributed to the synergistic effect of the high electron mobility of ordered 1D ZnO NWAs, extended visible-light absorption of CdS nanocrystals, and the formed type II band alignment between them. Moreover, the incorporation of RGO further promotes the charge carrier separation and transfer process due to its excellent charge collection and shuttling characteristics. Subsequently, the CdS/RGO/ZnO heterostructure is successfully utilized for the PEC bioanalysis of glutathione at 0 V (vs Ag/AgCl). The self-powered device demonstrates satisfactory sensing performance with rapid response, a wide detection range from 0.05 mm to 1 mm, an acceptable detection limit of 10 µm, as well as certain selectivity, reproducibility, and stability. Therefore, the CdS/RGO/ZnO heterostructure has opened up a promising channel for the development of PEC biosensors.


Asunto(s)
Técnicas Biosensibles/métodos , Compuestos de Cadmio/química , Técnicas Electroquímicas/métodos , Grafito/química , Luz , Nanocables/química , Sulfuros/química , Óxido de Zinc/química , Espectroscopía Dieléctrica , Electrodos , Glutatión/análisis , Nanocables/ultraestructura , Oxidación-Reducción , Espectroscopía de Fotoelectrones , Reproducibilidad de los Resultados , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier
13.
ACS Appl Mater Interfaces ; 7(13): 7382-8, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25786156

RESUMEN

In this work, a high-performance, forming-free memristor based on Au/ZnO nanorods/AZO (Al-doped ZnO conductive glass) sandwich structure has been developed by rapid hydrogen annealing treatment. The Ron/Roff rate is dramatically increased from ∼10 to ∼10(4) after the surface treatment. Such an enhanced performance is attributed to the introduced oxygen vacancies layer at the top of ZnO nanorods. The device also exhibits excellent switching and retention stability. In addition, the carrier migration behavior can be well interpreted by classical trap-controlled space charge limited conduction, which verifies the forming of conductive filamentary in low resistive state. On this basis, Arrhenius activation theory is adopted to explain the drifting of oxygen vacancies, which is further confirmed by the time pertinence of resistive switching behavior under different sweep speed. This fabrication approach offers a useful approach to enhance the switching properties for next-generation memory applications.

14.
ACS Appl Mater Interfaces ; 7(5): 3216-23, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25594311

RESUMEN

Interface modulation for broad-band light trapping and efficient carrier collection has always been the research focus in solar cells, which provides the most effective way to achieve performance enhancement. In this work, solution-processed 3D ordered ZnO/Cu2O nanoheterojunctions, consisting of patterned n-ZnO nanorod arrays (NRAs) and p-Cu2O films, are elaborately designed and fabricated for the first time. By taking advantage of nanoheterojunctions with square patterned ZnO NRAs, solar cells demonstrate the maximum current density and efficiency of 9.89 mA cm(-2) and 1.52%, which are improved by 201% and 127%, respectively, compared to that of cells without pattern. Experimental analysis and theoretical simulation confirm that this exciting result originates from a more efficient broad-band light trapping and carrier collection of the 3D ordered ZnO/Cu2O nanoheterojunctions. Such 3D ordered nanostructures will have a great potential application for low-cost and all oxide solar energy conversion. Furthermore, the methodology applied in this work can be also generalized to rational design of other efficient nanodevices and nanosystems.

15.
Sci Rep ; 5: 7882, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25600940

RESUMEN

We have engineered the electronic structure at the interface between Cu2O and ZnO nanorods (NRs) array, through adjusting the carrier concentration of Cu2O. The electrodeposition of Cu2O at pH 11 acquired the highest carrier concentration, resulting in the largest interfacial electric field between Cu2O and ZnO, which finally led to the highest separation efficiency of photogenerated charge carriers. The optimized Cu2O/ZnO NRs array p-n heterostructures exhibited enhanced PEC performance, such as elevated photocurrent and photoconversion efficiency, as well as excellent sensing performance for the sensitive detection of glutathione (GSH) in PBS buffer even at applied bias of 0 V which made the device self-powered. Besides, the favorable selectivity, high reproducibility and extremely wide detection range, make such heterostructure a promising candidate for PEC biosensing applications, probably for the extended field of PEC water splitting or other solar photovoltaic beacons.

16.
Anal Chim Acta ; 858: 49-54, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25597801

RESUMEN

We utilized CuNiO nanoparticles modified graphene sheets (CuNiO-graphene) to the application of enzymeless glucose sensing. The hydrothermal synthesized CuNiO nanoparticles were successfully assembled on graphene sheets. Distinct from general method, the high quality pristine graphene was produced by chemical vapor deposition (CVD) and bubbling transferred on the electrode. Incorporating the excellent electronic transport of graphene and high electrocatalytic activity of CuNiO nanoparticles, the CuNiO-graphene nanocomposite modified electrode possessed strong electrocatalytic ability toward glucose in alkaline media. The proposed nonenzymatic glucose sensor exhibited wide linear range up to 16 mM (two parts, from 0.05 to 6.9 mM and 6.9-16 mM) and high sensitivity (225.75 µA mM(-1) cm(-2) and 32.44 µA mM(-1) cm(-2), respectively). Excellent selectivity and acceptable stability were also achieved. Such an electrode would be attractive to sensor construction for its good properties, simple operation and low expense.


Asunto(s)
Cobre/química , Técnicas Electroquímicas , Glucosa/análisis , Grafito/química , Nanopartículas/química , Níquel/química , Glucemia/análisis , Electrodos , Límite de Detección , Nanocompuestos/química , Oxidación-Reducción
17.
Biosens Bioelectron ; 64: 499-504, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25299986

RESUMEN

We have realized the direct synthesis of ZnO nanorods (ZnO NRs) array on reduced graphene layer (rGO), and demonstrated the enhanced photoelectrochemical (PEC) property of the rGO/ZnO based photoanode under UV irradiation compared with the pristine ZnO NRs array. The introduction of the rGO layer resulted in a favorable energy band structure for electron migration, which finally led to the efficient photoinduced charge separation. Such nanostructure was subsequently employed for self-powered PEC biosensing of glutathione in the condition of 0 V bias, with a linear range from 10 to 200 µM, a detection limit of 2.17 µM, as well as excellent selectivity, reproducibility and stability. The results indicated the rGO/ZnO nanostructure is a competitive candidate in the PEC biosensing field.


Asunto(s)
Técnicas Biosensibles/instrumentación , Conductometría/instrumentación , Glutatión/análisis , Grafito/química , Mediciones Luminiscentes/instrumentación , Nanotubos/química , Óxido de Zinc/química , Electrodos , Diseño de Equipo , Análisis de Falla de Equipo , Glutatión/química , Nanotubos/ultraestructura , Óxidos/química
18.
Phys Chem Chem Phys ; 16(48): 26697-700, 2014 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-25371964

RESUMEN

A self-powered photodetector was fabricated by taking advantage of the band bending at the ZnO/electrolyte interface. And a 48% performance enhancement was achieved with the introduction of 0.15% compressive strain due to the generation of piezopolarization charges. This result could be extended to other solid-liquid reactions, such as photoelectrochemical or photocatalytic processes.

19.
Nanoscale ; 6(9): 4691-7, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24652390

RESUMEN

The fabrication of photoanodes with a high light-harvesting ability, direct electron pathway and low exciton recombination is a key challenge in dye-sensitized solar cells (DSSCs) today. In this paper, large-scale patterned ZnO-ZnS core-shell nanowire arrays (NWAs) are designed and fabricated as such photoanodes for the fist time. By using the NWA photoanodes with a hexagonal symmetry and FTO-Pt cathodes with an Al reflecting layer, the resulting DSSCs demonstrate a maxiumum efficiency of 2.09%, which is an improvement of 140% compared to the reference cells with line symmetry and no reflecting layer. This improvement is attributed to the enhanced light-harvesting ability of the patterned NWAs, as well as to the remarkable double absorption caused by the Al reflecting layer. Additionally, the ZnO core provides a direct electron pathway and the ZnS shell simultaneously reduces exciton recombination. This study shows an effective method to improve the performance of DSSCs which could be extended to other nanodevices and nanosystems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA