Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 325
Filtrar
1.
Mater Today Bio ; 28: 101176, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39171099

RESUMEN

The lack of accurate and reliable in vitro brain models hinders the development of brain science and research on brain diseases. Owing to the complex structure of the brain tissue and its highly nonlinear characteristics, the construction of brain-like in vitro tissue models remains one of the most challenging research fields in the construction of living tissues. This study proposes a multi-scale design of a brain-like model with a biomimetic cortical structure, which includes the macroscopic structural features of six layers of different cellular components, as well as micrometer-scale continuous fiber structures running through all layers vertically. To achieve integrated biomanufacturing of such a complex multi-scale brain-like model, a multi-material composite printing/culturing integrated bioprinting platform was developed in-house by integrating cell-laden hydrogel ink direct writing printing and electrohydrodynamic fiber 3D printing technologies. Through integrated bioprinting, multi-scale models with different cellular components and fiber structural parameters were prepared to study the effects of macroscopic and microscopic structural features on the directionality of neural cells, as well as the interaction between glial cells and neurons within the tissue model in a three-dimensional manner. The results revealed that the manufactured in vitro biomimetic cortical model achieved morphological connections between the layers of neurons, reflecting the structure and cellular morphology of the natural cortex. Micrometer-scale (10 µm) cross-layer fibers effectively guided and controlled the extension length and direction of the neurites of surrounding neural cells but had no significant effect on the migration of neurons. In contrast, glial cells significantly promoted the migration of surrounding PC12 cells towards the glial layer but did not contribute to the extension of neurites. This study provides a basis for the design and manufacture of accurate brain-like models for the functionalization of neuronal tissues.

2.
Sheng Wu Gong Cheng Xue Bao ; 40(8): 2604-2625, 2024 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-39174472

RESUMEN

Tyrosol is a natural phenolic compound with antioxidant, anti-inflammatory and other biological activities, serving as an important precursor of high-value products such as hydroxytyrosol and salidroside. Therefore, the green and efficient biosynthesis of tyrosol and its derivatives has become a research hotspot in recent years. Building cell factories by metabolic engineering of microorganisms is a potential industrial production way, which has low costs and environmental friendliness. This paper introduces the biosynthesis pathway of tyrosol and presents the key regulated nodes in the de novo synthesis of tyrosol in Escherichia coli and Saccharomyces cerevisiae. In addition, this paper reviews the recent advances in metabolic engineering for the production of hydroxytyrosol and salidroside. This review can provide a reference for engineering the strains for the high-yield production of tyrosol and its derivatives.


Asunto(s)
Escherichia coli , Ingeniería Metabólica , Alcohol Feniletílico , Saccharomyces cerevisiae , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/metabolismo , Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Fenoles/metabolismo , Glucósidos/biosíntesis , Glucósidos/metabolismo , Microbiología Industrial
3.
Bioresour Technol ; 409: 131187, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39094965

RESUMEN

Metabolic engineering provides a powerful approach to efficiently produce valuable compounds, with the aid of emerging gene editing tools and diverse metabolic regulation strategies. However, apart from the current known biochemical pathway information, a variety of unclear constraints commonly limited the optimization space of cell phenotype. Hydroxytyrosol is an important phenolic compound that serves various industries with prominent health-beneficial properties. In this study, the inverse metabolic engineering based on metabolome analysis was customized and implemented to disclose the hidden rate-limiting steps and thus to improve hydroxytyrosol production in Saccharomyces cerevisiae (S. cerevisiae). The potential rate-limiting steps involved three modules that were eliminated individually via reinforcing and balancing metabolic flow, optimizing cofactor supply, and weakening the competitive pathways. Ultimately, a 118.53 % improvement in hydroxytyrosol production (639.84 mg/L) was achieved by inverse metabolic engineering.


Asunto(s)
Ingeniería Metabólica , Metabolómica , Alcohol Feniletílico , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Alcohol Feniletílico/metabolismo , Alcohol Feniletílico/análogos & derivados , Ingeniería Metabólica/métodos , Metaboloma
4.
Light Sci Appl ; 13(1): 146, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951490

RESUMEN

Terahertz (THz) emission spectroscopy (TES) has emerged as a highly effective and versatile technique for investigating the photoelectric properties of diverse materials and nonlinear physical processes in the past few decades. Concurrently, research on two-dimensional (2D) materials has experienced substantial growth due to their atomically thin structures, exceptional mechanical and optoelectronic properties, and the potential for applications in flexible electronics, sensing, and nanoelectronics. Specifically, these materials offer advantages such as tunable bandgap, high carrier mobility, wideband optical absorption, and relatively short carrier lifetime. By applying TES to investigate the 2D materials, their interfaces and heterostructures, rich information about the interplay among photons, charges, phonons and spins can be unfolded, which provides fundamental understanding for future applications. Thus it is timely to review the nonlinear processes underlying THz emission in 2D materials including optical rectification, photon-drag, high-order harmonic generation and spin-to-charge conversion, showcasing the rich diversity of the TES employed to unravel the complex nature of these materials. Typical applications based on THz emissions, such as THz lasers, ultrafast imaging and biosensors, are also discussed. Step further, we analyzed the unique advantages of spintronic terahertz emitters and the future technological advancements in the development of new THz generation mechanisms leading to advanced THz sources characterized by wide bandwidth, high power and integration, suitable for industrial and commercial applications. The continuous advancement and integration of TES with the study of 2D materials and heterostructures promise to revolutionize research in different areas, including basic materials physics, novel optoelectronic devices, and chips for post-Moore's era.

5.
Sensors (Basel) ; 24(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-39000885

RESUMEN

In this study, we design an embedded surface EMG acquisition device to conveniently collect human surface EMG signals, pursue more intelligent human-computer interactions in exoskeleton robots, and enable exoskeleton robots to synchronize with or even respond to user actions in advance. The device has the characteristics of low cost, miniaturization, and strong compatibility, and it can acquire eight-channel surface EMG signals in real time while retaining the possibility of expanding the channel. This paper introduces the design and function of the embedded EMG acquisition device in detail, which includes the use of wired transmission to adapt to complex electromagnetic environments, light signals to indicate signal strength, and an embedded processing chip to reduce signal noise and perform filtering. The test results show that the device can effectively collect the original EMG signal, which provides a scheme for improving the level of human-computer interactions and enhancing the robustness and intelligence of exoskeleton equipment. The development of this device provides a new possibility for the intellectualization of exoskeleton systems and reductions in their cost.


Asunto(s)
Electromiografía , Procesamiento de Señales Asistido por Computador , Electromiografía/instrumentación , Electromiografía/métodos , Humanos , Procesamiento de Señales Asistido por Computador/instrumentación , Diseño de Equipo , Dispositivo Exoesqueleto , Robótica/instrumentación
6.
Ren Fail ; 46(2): 2368091, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39049724

RESUMEN

Recent studies have shown that microRNA-16-5p (miR-16-5p) plays a crucial role in the pathological mechanism of vascular calcification. Nevertheless, the expression profile of miR-16-5p in maintenance hemodialysis (MHD) patients who are predisposed to vascular calcification remains unknown. This study aims to investigate the potential associations between calcification risk and serum miR-16-5p expression among MHD patients. This cross-sectional study involved 132 MHD patients from the Dialysis Center of Beijing Friendship Hospital between 1 January 2019 and 31 December 2020. The degree of calcification in MHD patients was assessed using the Abdominal aortic calcification (AAC) score, and miR-16-5p expression was quantified using quantitative real-time polymerase chain reaction (qRT-PCR) with the 2-ΔΔCT method. Statistical analyses, including spearman correlation, linear regression and logistic regression analysis were used to explore the associations between laboratory parameters and AAC score. Calcifications were observed in 79(59.80%) patients. The linear regression showed a one-quartile decrease in miR-16-5p expression led to a significant increase in the AAC score by 5.336 (95% CI: 2.670-10.662, p = 0.000). Multivariate logistic regression analyses revealed that decreased miR-16-5p expression, reduced serum urea nitrogen, elevated white blood cell count, and longer dialysis vintage were significantly associated with an increased incidence of vascular calcification. The Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) of the miR-16-5p-based logistic regression model was 0.842 (95% CI: 0.771-0.913, p = 0.000). There was an independent association between miR-16-5p expression and calcification degree. Lower miR-16-5p expression levels seem to be a potential risk factor of vascular calcification in MHD patients.


Asunto(s)
Aorta Abdominal , MicroARNs , Diálisis Renal , Calcificación Vascular , Humanos , MicroARNs/sangre , Masculino , Femenino , Diálisis Renal/efectos adversos , Calcificación Vascular/sangre , Calcificación Vascular/etiología , Persona de Mediana Edad , Aorta Abdominal/patología , Aorta Abdominal/diagnóstico por imagen , Estudios Transversales , Anciano , Fallo Renal Crónico/terapia , Fallo Renal Crónico/sangre , Fallo Renal Crónico/complicaciones , Curva ROC , Factores de Riesgo , Modelos Logísticos
7.
Cell Signal ; 122: 111313, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39053673

RESUMEN

BACKGROUND: DNA methylation is an important epigenetic mechanism of gene regulation. The aberrant DNA methylation has been found to play an important role in the initiation and progression of tumors. RESULTS: Transcriptome and DNA methylation data of lung adenocarcinoma (LUAD) patients were co-analyzed and 95 methylation-driven genes (MDGs) was found in relation to LUAD. A prognostic model based on 3 MDGs (GMNN, SPINK2 and VMO1) was constructed by Univariate and Multivariate cox regression analyses. The risk score generated from the prognostic model could be used to classify LUAD patients into high and low risk groups. Furthermore, it was found that the risk score was associated with tumor microenvironment (TME) and clinical characteristics (survival status and T stage) of patients. Interestingly, we identified and validated that the patients in the low-risk group responded better to immunotherapy treatment. Then, a nomogram model based on the risk score and clinical characteristics was established which showed significant prediction value. The down-regulation and hypermethylation levels of vitelline membrane outer layer protein 1 homolog (VMO1) were verified in paired LUAD tumor and non-tumor tissues by pyrosequencing assay and RT-qPCR. Furthermore, MTT, migration and wound healing assays were performed with lentivector-mediated ectopic over-expression and 5-Aza-dC demethylation followed by siRNA rescue experiments to investigate the role of VMO1 in LUAD cells. Our results indicated that VMO1 could inhibit proliferation and migration of A549 and NCI-H1299 cells. CONCLUSIONS: In summary, our experiments constructed a prognostic model with high capacity for risk prediction in LUAD patients. VMO1 had a malignant suppressor role in LUAD cells. The correlation between risk score and TME might elucidate a potential mechanism of oncogenesis and provide an avenue for further therapeutic targets.

8.
Angew Chem Int Ed Engl ; : e202411911, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073369

RESUMEN

Stimulated emission of organic π-conjugated molecule in solid state remains a significant challenge, mainly involving the mode of molecular stacking that invariably alters the photo-physical processes. Herein, we successfully realized the stimulated emission in molecular crystals using a hydrogen-bonded co-crystallization strategy. Two hydrogen-bonded co-crystals, obtained from 1,4-bis-p-cyanostyrylbenzene (CNDSB) and two types of co-formers, can boost stimulated emission and show decent amplified spontaneous emission (ASE), whereas the parent CNDSB crystal is not SE-active. Crystal structural analysis demonstrated that the co-crystallization eliminated excimer formation. The resulting higher kr and shorter excited-lifetime led to a larger stimulated-emission cross section, which benefited to the occurrence of ASE. Simultaneously, the uniaxial arrangements along long axis of co-crystal together contributed to highly polarized emission. This system presents very rare evidence of boosting stimulated emission by binary co-crystallization, which enriches our insights into organic solid-state lasers.

9.
Cereb Cortex ; 34(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38989873

RESUMEN

Competition is common in life, and intimate relationships are essential. Understanding how intimate relationships impact an individual's competitive process is crucial. This study explored the impact of competitor gender on female competition using electroencephalography analysis. The results revealed that females exhibited a smaller median of the absolute value of reaction time difference (DRT) between their partners and their competitors when their partners were absent compared to when their partners were present. Additionally, females showed greater average amplitudes of N2 posterior contralateral component (N2pc) and Late Positive Potential (LPP), increased activation of the alpha frequency band, and enhanced theta frequency band functional connectivity between the central parietal lobe and occipital lobe. Furthermore, when competing with individuals of the same gender as opposed to individuals of the opposite gender, females exhibited greater average amplitudes of percentage of wins and N2pc. A significant negative correlation was noted between the DRT and the average wave amplitudes of N2pc and LPP. These findings suggest that females are more engaged in competitive tasks when partners are not present and have improved decision-making when competing with same-gender individuals. This study provides evidence for the influence of lovers on female competition, helping females adapt to social competition and promoting healthy relationships.


Asunto(s)
Encéfalo , Conducta Competitiva , Electroencefalografía , Relaciones Interpersonales , Humanos , Femenino , Adulto Joven , Encéfalo/fisiología , Adulto , Conducta Competitiva/fisiología , Tiempo de Reacción/fisiología , Potenciales Evocados/fisiología
10.
Neuroscience ; 557: 37-50, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986738

RESUMEN

The study employed event-related potential (ERP), time-frequency analysis, and functional connectivity to comprehensively explore the influence of male's relative height on third-party punishment (TPP) and its underlying neural mechanism. The results found that punishment rate and transfer amount are significantly greater when the height of the third-party is lower than that of the recipient, suggesting that male's height disadvantage promotes TPP. Neural results found that the height disadvantage induced a smaller N1. The height disadvantage also evoked greater P300 amplitude, more theta power, and more alpha power. Furthermore, a significantly stronger wPLI between the rTPJ and the posterior parietal and a significantly stronger wPLI between the DLPFC and the posterior parietal were observed when third-party was at the height disadvantage. These results imply that the height disadvantage causes negative emotions and affects the fairness consideration in the early processing stage; the third-party evaluates the blame of violators and makes an appropriate punishment decision later. Our findings indicate that anger and reputation concern caused by height disadvantage promote TPP. The current study holds significance as it underscores the psychological importance of height in males, broadens the perspective on factors influencing TPP, validates the promoting effect of personal disadvantages on prosocial behavior, enriches our understanding of indirect reciprocity theory, and extends the application of the evolution theory of Napoleon complex.

11.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38904082

RESUMEN

In real-life scenarios, joint consumption is common, particularly influenced by social relationships such as romantic ones. However, how romantic relationships affect consumption decisions and determine dominance remains unclear. This study employs electroencephalography hyperscanning to examine the neural dynamics of couples during joint-consumption decisions. Results show that couples, compared to friends and strangers, prefer healthier foods, while friends have significantly faster reaction times when selecting food. Time-frequency analysis indicates that couples exhibit significantly higher theta power, reflecting deeper emotional and cognitive involvement. Strangers show greater beta1 power, indicating increased cognitive effort and alertness due to unfamiliarity. Friends demonstrate higher alpha2 power when choosing unhealthy foods, suggesting increased cognitive inhibition. Inter-brain phase synchrony analysis reveals that couples display significantly higher inter-brain phase synchrony in the beta1 and theta bands across the frontal-central, parietal, and occipital regions, indicating more coordinated cognitive processing and stronger emotional bonds. Females in couples may be more influenced by emotions during consumption decisions, with detailed sensory information processing, while males exhibit higher cognitive control and spatial integration. Granger-causality analysis shows a pattern of male dominance and female dependence in joint consumption within romantic relationships. This study highlights gender-related neural synchronous patterns during joint consumption among couples, providing insights for further research in consumer decision-making.


Asunto(s)
Encéfalo , Conducta de Elección , Electroencefalografía , Relaciones Interpersonales , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Conducta de Elección/fisiología , Encéfalo/fisiología , Tiempo de Reacción/fisiología , Emociones/fisiología
12.
J Colloid Interface Sci ; 674: 145-157, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38925060

RESUMEN

This study introduces a self-driven system that effectively achieves synchronized sulfur recovery and hydrogen production using a Zn-air battery. The system ingeniously integrates the sulfur oxidation reaction (SOR) and the hydrogen evolution reaction (HER) into a single, efficient process. Central to this system is the trifunctional phosphorus-doped cobalt molybdate catalyst (P-CoMoO4/NF), which exhibits superior performance in both HER (ηj = 100 = 0.13 V) and SOR (ηj = 100 = 0.30 V) with remarkable stability (∼360 h), reaching 0.64 V at 100 mA cm-2 for simultaneous sulfur ion degradation and hydrogen production. Through density functional theory simulations and extensive characterizations, it has been shown that phosphorus doping in the cobalt molybdate catalyst facilitates electron redistribution, enhancing the catalyst's conductivity, generating more oxygen vacancies, and promoting improved mass and electron transfer. This modification also lowers the energy barrier for adsorbing reaction intermediates, thus increasing the hydrogen production rate and sulfur oxide conversion in this self-powered system. In summary, this research marks a substantial advancement in the development of trifunctional catalysts and proposes an eco-friendly, cost-effective strategy for integrated reaction systems, paving the way for sustainable energy solutions.

13.
Molecules ; 29(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38792040

RESUMEN

Proanthocyanidins, natural polyphenolic compounds abundantly present in plants, exhibit diverse bioactivities, including antioxidative, anti-inflammatory, and antibacterial effects. These bioactivities are intricately linked to the degree of polymerization of these compounds. Through a comprehensive analysis of recent domestic and international research, this article synthesizes the latest advancements in the extraction process, degradation methods, as well as the biological activities and underlying mechanisms of proanthocyanidins. Furthermore, future research endeavors should prioritize the refinement of extraction techniques, the elucidation of bioactive mechanisms, and the development of formulations with enhanced potency. This will maximize the utilization of proanthocyanidins across diverse applications.


Asunto(s)
Antiinflamatorios , Antioxidantes , Proantocianidinas , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/aislamiento & purificación , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Proantocianidinas/química , Proantocianidinas/aislamiento & purificación , Proantocianidinas/farmacología
14.
Nanoscale Adv ; 6(9): 2363-2370, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38694473

RESUMEN

Herein, we report the successful fabrication of a series of transition metal doped Ni nanoparticles (NPs) coordinated with Ni single atoms in nitrogen-doped carbon nanotubes (denoted as Ni1+NPsM-NCNTs, M = Mn, Fe, Co, Cu and Zn; Ni1 = Ni single atom). X-ray absorption fine structure reveals the coexistence of Ni single atoms with Ni-N4 coordination and NiM NPs. When applied for electrocatalytic CO2RR, the Ni1+NPsM-NCNT compounds show the Faradaic efficiency of CO (FECO) with a volcano-like tendency of Mn < Fe ≈ Co < Zn < Cu, in which the Ni1+NPsCu-NCNT exhibits the highest FECO of 96.92%, a current density of 171.25 mA cm-2 and a sustainable stability over 24 hours at a current density of 100 mA cm-2, outperforming most reported examples in the literature. Detailed experiments and theoretical calculations reveal that for Ni1+NPsCu-NCNTs, the electron transfer from NiCu NPs to Ni single atoms strengthens the adsorption of *COOH intermediates. Moreover, the d-band center of Ni-N in Ni1+NPsCu-NCNT is upshifted, providing stronger binding with the reaction intermediates of *COOH, whereas the NiCu NPs increase the Gibbs free energy change of the Volmer step, suppressing the competitive HER.

15.
Nanoscale Adv ; 6(9): 2319-2327, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38694453

RESUMEN

This study reports a metal-enhanced fluorescence chemodosimeter for highly sensitive detection of Hg2+ ions. Silica-coated Au nanoparticles (Au@SiO2 NPs) with a pinhole-free 4-5 nm shell were synthesized and functionalized with a monolayer of turn-on fluorescent probes. Compared to other organic fluorescent probes suffering from poor biocompatibility and detection limits, this design of a monolayer of turn-on fluorescent probes immobilized on the Au@SiO2 NPs with a pinhole-free 4-5 nm shell avoids fluorescence quenching and allows the fluorescent probe within the field of the inner Au NPs to experience metal-enhanced fluorescence. With this design, the chemodosimeter permits fluorescence emission in the presence of Hg2+ ions, because they trigger the ring-opening reaction of the fluorescent probe immobilized on the Au@SiO2 NPs. Additionally, the fluorescent probe is distanced by the thin SiO2 shell from directly attaching to the metallic Au NPs, which not only avoids fluorescence quenching but allows the fluorescent probe within the long-ranged field of the inner Au NPs to experience metal-enhanced fluorescence. As a result, the detection limit for the chemodosimeter can reach up to 5.0 × 10-11 M, nearly two orders of magnitude higher than that achieved for the free fluorescent probe. We also demonstrate the acquisition of images of Hg2+ in HTC116 cells and zebrafish using a simple fluorescence confocal imaging technique. The fluorescence response results for HTC116 cells and zebrafish show that the probes can permeate into cells and organisms. Considering the availability of the many organic fluorescent probes that have been designed, the current designed metal-enhanced fluorescence chemodosimeter holds great potential for fluorescence detection of diverse species and fluorescence imaging.

16.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38566514

RESUMEN

Cooperation and competition are the most common forms of social interaction in various social relationships. Intergroup relationships have been posited to influence individuals' interpersonal interactions significantly. Using electroencephalography hyperscanning, this study aimed to establish whether intergroup relationships influence interpersonal cooperation and competition and the underlying neural mechanisms. According to the results, the in-group Coop-index is better than the out-group, whereas the out-group Comp-index is stronger than the in-group. The in-group functional connectivity between the frontal-central region and the right temporoparietal junction in the ß band was stronger in competition than cooperation. The out-group functional connectivity between the frontal-central region and the left temporoparietal junction in the α band was stronger in cooperation than competition. In both cooperation and competition, the in-group exhibited higher interbrain synchronization between the prefrontal cortex and parietal region in the θ band, as well as between the frontal-central region and frontal-central region in the α band, compared to the out-group. The intrabrain phase-locking value in both the α and ß bands can effectively predict performance in competition tasks. Interbrain phase-locking value in both the α and θ bands can be effectively predicted in a performance cooperation task. This study offers neuroscientific evidence for in-group favoritism and out-group bias at an interpersonal level.


Asunto(s)
Conducta Cooperativa , Electroencefalografía , Humanos , Electroencefalografía/métodos , Corteza Prefrontal , Relaciones Interpersonales , Lóbulo Parietal , Encéfalo , Mapeo Encefálico
17.
RSC Adv ; 14(13): 8790-8800, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38495983

RESUMEN

The characteristics of TiO2 nanotube arrays (TNTs) prepared on Ti foil in sulfuric acid solution that contains Cl- under different temperatures are investigated by field emission scanning electron microscopy (FESEM), electrochemical impedance spectroscopy (EIS), Mott-Schottky measurement and Raman spectra. The solution temperature significantly affects the morphologies of TNTs, i.e., when solution temperature rises from -10 °C to 90 °C, the inner diameter of the nanotube increases and the barrier layer thickness decreases, and, as TNTs display n-type semiconductive properties, the donor density (ND) and corrosion protection decrease. Two types (types I and II) of pulse temperature are used to fabricate TNTs, in which type I is firstly anodized at a low temperature for time t, and then increases to a high temperature. While for type II, the solution temperature order is opposite to that of type I. The ND of TNTs in the case of type I is lower than ND of TNTs in the case of type II. ND decreases with the increased pulse step time for type I, while ND increases with the increased pulse step time for type II.

18.
Sci Total Environ ; 923: 171447, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447714

RESUMEN

Di-(2-ethylhexyl) phthalate (DEHP) is an extensively used phthalate esters (PAEs) that raise growing ecotoxicological concerns due to detrimental effects on living organisms and ecosystems. This study performed hepatotoxic investigations on crucian carp under chronic low-dosage (CLD) exposure to DEHP at environmentally relevant concentrations (20-500 µg/L). The results demonstrated that the CLD exposure induced irreversible damage to the liver tissue. Multi-omics (transcriptomics and metabolomics) analyses revealed the predominant toxicological mechanisms underlying DEHP-induced hepatotoxicity by inhibiting energy production pathways and the up-regulation of the purine metabolism. Disruption of metabolic pathways led to excessive reactive oxygen species (ROS) production and subsequent oxidative stress. The adverse metabolic effects were exacerbated by an interplay between oxidative stress and endoplasmic reticulum stress. This study not only provides new mechanistic insights into the ecotoxicological effects of DEHP under chronic low-dosage exposure, but also suggests a potential strategy for further ecological risk assessment of PAEs.


Asunto(s)
Carpas , Dietilhexil Ftalato , Ácidos Ftálicos , Animales , Dietilhexil Ftalato/metabolismo , Ecosistema , Carpas/metabolismo , Multiómica , Ácidos Ftálicos/toxicidad , Ácidos Ftálicos/análisis
19.
ACS Nano ; 18(14): 9798-9822, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38551449

RESUMEN

Extreme climates have become frequent nowadays, causing increased heat stress in human daily life. Personal thermal management (PTM), a technology that controls the human body's microenvironment, has become a promising strategy to address heat stress. While effective in ordinary environments, traditional high-performance fibers, such as ultrafine, porous, highly thermally conductive, and phase change materials, fall short when dealing with harsh conditions or large temperature fluctuations. Aerogels, a third-generation superinsulation material, have garnered extensive attention among researchers for their thermal management applications in building energy conservation, transportation, and aerospace, attributed to their extremely low densities and thermal conductivity. While aerogels have historically faced challenges related to weak mechanical strength and limited secondary processing capacity, recent advancements have witnessed notable progress in the development of wearable aerogels for PTM. This progress underscores their potential applications within extremely harsh environments, serving as self-powered smart devices and sensors. This Review offers a timely overview of wearable aerogels and their PTM applications with a particular focus on their wearability and suitability. Finally, the discussion classifies five types of PTM applications based on aerogel function: thermal insulation, heating, cooling, adaptive regulation (involving thermal insulation, heating, and cooling), and utilization of aerogels as wearable smart devices.

20.
Brain Topogr ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448713

RESUMEN

Social norms and altruistic punitive behaviours are both based on the integration of information from multiple contexts. Individual behavioural performance can be altered by loss and gain contexts, which produce different mental states and subjective perceptions. In this study, we used event-related potential and time-frequency techniques to examine performance on a third-party punishment task and to explore the neural mechanisms underlying context-dependent differences in punishment decisions. The results indicated that individuals were more likely to reject unfairness in the context of loss (vs. gain) and to increase punishment as unfairness increased. In contrast, fairness appeared to cause an early increase in cognitive control signal enhancement, as indicated by the P2 amplitude and theta oscillations, and a later increase in emotional and motivational salience during decision-making in gain vs. loss contexts, as indicated by the medial frontal negativity and beta oscillations. In summary, individuals were more willing to sanction violations of social norms in the loss context than in the gain context and rejecting unfair losses induced more equity-related cognitive conflict than accepting unfair gains, highlighting the importance of context (i.e., gain vs. loss) in equity-related social decision-making processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...