Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Drug Metab Dispos ; 52(7): 654-661, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38729662

RESUMEN

The delicate balance between ischemic and bleeding risks is a critical factor in antiplatelet therapy administration. Clopidogrel and prasugrel, belonging to the thienopyridine class of antiplatelet drugs, are known for their variability in individual responsiveness and high incidence of bleeding events, respectively. The present study is centered on the development and assessment of a range of deuterated thienopyridine derivatives, leveraging insights from structure-pharmacokinetic relationships of clopidogrel and prasugrel. Our approaches were grounded in the molecular framework of clopidogrel and incorporated the C2-pharmacophore design from prasugrel. The selection of ester or carbamate substituents at the C2-position facilitated the generation of the 2-oxointermediate through hydrolysis, akin to prasugrel, thereby bypassing the issue of CYP2C19 dependency. The bulky C2-pharmacophore in our approach distinguishes itself from prasugrel's acetyloxy substituent by exhibiting a moderated hydrolysis rate, resulting in a more gradual formation of the active metabolite. Excessive and rapid release of the active metabolite, believed to be linked with an elevated risk of bleeding, is thus mitigated. Our proposed structural modification retains the hydrolysis-sensitive methyl ester of clopidogrel but substitutes it with a deuterated methyl group, shown to effectively reduce metabolic deactivation. Three promising compounds demonstrated a pharmacokinetic profile similar to that of clopidogrel at four times the dose, while also augmenting its antiplatelet activity. SIGNIFICANCE STATEMENT: Inspired by the structure-pharmacokinetic relationship of clopidogrel and prasugrel, a range of clopidogrel derivatives were designed, synthesized, and assessed. Among them, three promising compounds have been identified, striking a delicate balance between efficacy and safety for antiplatelet therapy. Additionally, the ozagrel prodrug conjugate was discovered to exert a synergistic therapeutic effect alongside clopidogrel.


Asunto(s)
Clopidogrel , Inhibidores de Agregación Plaquetaria , Clorhidrato de Prasugrel , Clopidogrel/farmacocinética , Clopidogrel/farmacología , Inhibidores de Agregación Plaquetaria/farmacocinética , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/química , Humanos , Clorhidrato de Prasugrel/farmacocinética , Clorhidrato de Prasugrel/farmacología , Citocromo P-450 CYP2C19/metabolismo , Relación Estructura-Actividad , Activación Metabólica , Masculino , Hidrólisis , Microsomas Hepáticos/metabolismo , Microsomas Hepáticos/efectos de los fármacos
2.
Plants (Basel) ; 12(14)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37514344

RESUMEN

Shepherd's-purse (Capsella bursa-pastoris), a globally distributed noxious weed species often found in wheat, has evolved resistance to ALS-inhibiting herbicides mainly due to single mutations in the ALS gene. In the present study, dose-response bioassays showed that a shepherd's-purse population (R), collected from Xinghua, Jiangsu Province, China, had high level of resistance to the ALS-inhibiting herbicide, mesosulfuron-methyl (800-fold), and even much higher resistance levels to other reported ALS-inhibiting herbicides, tribenuron-methyl (1313-fold), bensulfuron-methyl (969-fold) and penoxsulam (613-fold). Sequencing of the open reading frame of the ALS gene revealed a double ALS gene mutation (Pro197-Ser plus Trp574-Leu) conferring the high resistance in the R plants. Docking analysis of the ALS protein and mesosulfuron-methyl predicts that the two amino acid substitutions in the R samples reduces the binding energy to the herbicide by decreasing the hydrogen bonds (H-bonds) and other interactions, thus endowing resistance to ALS-inhibiting herbicides. These results demonstrate that the double ALS mutation confers high resistance levels to ALS-inhibiting herbicides. To our knowledge, this is the first evidence of the double ALS mutation in shepherd's-purse endowing ALS-inhibiting herbicide resistance.

3.
Molecules ; 28(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37375337

RESUMEN

Polylactic acids (PLAs) are synthetic polymers composed of repeating lactic acid subunits. For their good biocompatibility, PLAs have been approved and widely applied as pharmaceutical excipients and scaffold materials. Liquid chromatography-tandem mass spectrometry is a powerful analytical tool not only for pharmaceutical ingredients but also for pharmaceutical excipients. However, the characterization of PLAs presents particular problems for mass spectrometry techniques. In addition to their high molecular weights and wide polydispersity, multiple charging and various adductions are intrinsic features of electrospray ionization. In the present study, a strategy combining of differential mobility spectrometry (DMS), multiple ion monitoring (MIM) and in-source collision-induced dissociation (in source-CID) has been developed and applied to the characterization and quantitation of PLAs in rat plasma. First, PLAs will be fragmented into characteristic fragment ions under high declustering potential in the ionization source. The specific fragment ions are then screened twice by quadrupoles to ensure a high signal intensity and low interference for mass spectrometry detection. Subsequently, DMS technique has been applied to further reduce the background noise. The appropriately chosen surrogate specific precursor ions could be utilized for the qualitative and quantitative analysis of PLAs, which provided results with the advantages of low endogenous interference, sufficient sensitivity and selectivity for bioassay. The linearity of the method was evaluated over the concentration range 3-100 µg/mL (r2 = 0.996) for PLA 20,000. The LC-DMS-MIM coupled with in source-CID strategy may contribute to the pharmaceutical studies of PLAs and the possible prospects of other pharmaceutical excipients.


Asunto(s)
Polímeros , Espectrometría de Masas en Tándem , Ratas , Animales , Espectrometría de Masas en Tándem/métodos , Excipientes/química , Iones/química , Análisis Espectral , Espectrometría de Masa por Ionización de Electrospray
4.
J Agric Food Chem ; 71(24): 9302-9313, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37170102

RESUMEN

A wild radish population (R) has been recently confirmed to be cross-resistant to 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicides without previous exposure to these herbicides. This cross-resistance is endowed by enhanced metabolism. Our study identified one 2-oxoglutarate/Fe(II)-dependent dioxygenase gene (Rr2ODD1) and two P450 genes (RrCYP704C1 and RrCYP709B1), which were significantly more highly expressed in R versus susceptible (S) plants. Gene functional characterization using Arabidopsis transformation showed that overexpression of RrCYP709B1 conferred a modest level of resistance to mesotrione. Ultra-performance liquid chromatography-tandem mass spectrometry analysis showed that tissue mesotrione levels in RrCYP709B1 transgenic Arabidopsis plants were significantly lower than that in the wild type. In addition, overexpression of Rr2ODD1 or RrCYP704C1 in Arabidopsis endowed resistance to tembotrione and isoxaflutole. Structural modeling indicated that mesotrione can bind to CYP709B1 and be easily hydroxylated to form 4-OH-mesotrione. Although each gene confers a modest level of resistance, overexpression of the multiple herbicide-metabolizing genes could contribute to HPPD-inhibiting herbicide resistance in this wild radish population.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Arabidopsis , Herbicidas , Raphanus , Herbicidas/química , 4-Hidroxifenilpiruvato Dioxigenasa/genética , 4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , Raphanus/genética , Raphanus/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo
5.
Materials (Basel) ; 16(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37049090

RESUMEN

In this study, in order to provide proper parameters for the preparation of semisolid billets, the semisolid annealing of hot-rolled 2A14 Al alloy was investigated. The microstructure was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) with an X-ray energy dispersive spectrometer (EDS) and electron backscattered diffraction (EBSD), and scanning transmission electron microscopy (STEM). The XRD results showed that, with an increase in temperature, the θ-Al2Cu equilibrium gradually dissolved in the matrix. The EDS results of SEM and STEM showed a coarse θ-Al2Cu phase, ultrafine precipitate Al(MnFeSi) or (Mn, Fe)Al6 phase, and atomic clusters in the microstructure. The EBSD results showed that the recrystallization mechanism was dominated by continuous static recrystallization (CSRX), homogeneous nucleation occurred when the sample was heated to near solidus temperature, and CSRX occurred at a semisolid temperature. In the process of recrystallization, the microtexture changed from the preferred orientation to a random orientation. Various experimental results showed that static recrystallization (SRX) occurred at a semisolid temperature due to the blocking effect of atomic clusters on the dislocation slip, and the Zener drag effect of fine precipitates on low-angle grain boundaries (LAGBs) disappeared with melting at a semisolid temperature.

6.
Sci Rep ; 13(1): 5716, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37029148

RESUMEN

Complex pollutants are discharging and accumulating in rivers and oceans, requiring a coupled strategy to resolve pollutants efficiently. A novel method is proposed to treat multiple pollutants with C,N co-doped TiO2 hollow nanofibers coated stainless steel meshes which can realize efficient oil/water separation and visible light-drove dyes photodegradation. The poly(divinylbenzene-co-vinylbenzene chloride), P(DVB-co-VBC), nanofibers are generated by precipitate cationic polymerization on the mesh framework, following with quaternization by triethylamine for N doping. Then, TiO2 is coated on the polymeric nanofibers via in-situ sol-gel process of tetrabutyl titanate. The functional mesh coated with C,N co-doped TiO2 hollow nanofibers is obtained after calcination under nitrogen atmosphere. The resultant mesh demonstrates superhydrophilic/underwater superoleophobic property which is promising in oil/water separation. More importantly, the C,N co-doped TiO2 hollow nanofibers endow the mesh with high photodegradation ability to dyes under visible light. This work draws an affordable but high-performance multifunctional mesh for potential applications in wastewater treatment.

7.
Polymers (Basel) ; 15(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36987162

RESUMEN

For the advantages of low cost, excellent thermal insulation, and sound absorption properties, the rigid isocyanate-based polyimide foam (RPIF) presents great application prospects as a building insulation material. However, its inflammability and the accompanying toxic fumes create huge safety hazard. In this paper, reactive phosphate-containing polyol (PPCP) is synthesized and employed with expandable graphite (EG) to obtain RPIF with excellent use safety. EG can be considered as an ideal partner for PPCP to weaken the drawbacks in toxic fume release. Limiting oxygen index (LOI), cone calorimeter test (CCT), and toxic gas results show that the combination of PPCP and EG can synergistically enhance flame retardancy and the use safety of RPIF owing to the unique structure of a dense char layer possessing a flame barrier and toxic gas adsorption effects. When EG and PPCP are simultaneously applied to the RPIF system, the higher EG dosage will bring higher positive synergistic effects in the use safety of RPIF. The most preferred ratio of EG and PPCP is 2:1 (RPIF-10-5) in this study; RPIF-10-5 shows the highest LOI, low CCT results and specific optical density of smoke, and low HCN concentration. This design and the findings are of great significance to improving the application of RPIF.

8.
Materials (Basel) ; 15(12)2022 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-35744393

RESUMEN

The squeeze casting process for an AlSi9Mg aluminum alloy flywheel housing component was numerically simulated using the ProCAST software, and orthogonal simulation tests were designed according to the L16 (4) 5 orthogonal test table to investigate the alloy melt flow rule under four factors and four levels each of the pouring temperature, mold temperature, pressure holding time and specific pressure, as well as the distributions of the temperature fields, stress fields and defects. The results showed that the flywheel housing castings in all 16 test groups were fully filled, and the thinner regions solidified more quickly than the thicker regions. Hot spots were predicted at the mounting ports and the convex platform, which could be relieved by adding a local loading device. Due to the different constraints on the cylinder surface and the lower end surface, the solidification was inconsistent, the equivalent stress at the corner junction was larger, and the castings with longer pressure holding time and lower mold temperature had larger average equivalent stress. Shrinkage cavities were mainly predicted at mounting ports, the cylindrical convex platform, the peripheral overflow groove and the corner junctions, and there was also a small defect region at the edge of the upper end face in some test groups.

9.
Pharmacology ; 107(5-6): 308-316, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35279654

RESUMEN

INTRODUCTION: Dual antiplatelet therapy with aspirin in combination with a P2Y12 receptor antagonist is a cornerstone for treating patients with acute coronary syndrome and in percutaneous coronary intervention. However, as this combination of antiplatelet therapy increases the risk of bleeding, proton pump inhibitors (PPIs) are currently recommended to prevent gastrointestinal ulcers and bleeding. The cytochrome P450 (CYP450) isoenzyme system metabolizes both clopidogrel (CLP) and PPIs. Unfortunately, omeprazole (OM) reduce the antiplatelet activity of CLP and increases the probability of recurrence of cardiovascular events by competitively inhibiting the CYP450 isoenzyme CYP2C19. METHODS: To address these abovementioned problems, we designed and synthesized deuterium CLP (D-CL) using selective deuterium technology. Our previous research results showed that D-CL had better pharmacokinetic and pharmacodynamic properties. Thus, the HPLC-MS/MS method, cocktail method, Born method, electro-stimulated thrombus generation, and thrombus elastography were used to detect the production of thiol active metabolites (AM), CYP450 enzyme activities, platelet aggregation, time and length of thrombus formation, and the maximum clot strength after combination therapy. We investigated the pharmacokinetics and pharmacodynamics properties of D-CL combined with OM. RESULTS: As compared to CLP, D-CL was less affected when combined with OM, which was reflected in lower inhibitory effects of CYP450 enzyme activities, a greater area under the curve of AM, and better antiplatelet and antithrombotic effects. CONCLUSION: D-CL may reduce drug-drug interactions and address the clinical disadvantages of CLP.


Asunto(s)
Omeprazol , Ticlopidina , Clopidogrel , Citocromo P-450 CYP2C19 , Deuterio , Interacciones Farmacológicas , Quimioterapia Combinada , Humanos , Isoenzimas , Omeprazol/farmacología , Inhibidores de Agregación Plaquetaria/uso terapéutico , Inhibidores de la Bomba de Protones/farmacología , Espectrometría de Masas en Tándem , Ticlopidina/farmacocinética
10.
Eur J Pharm Sci ; 172: 106157, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35257876

RESUMEN

BACKGROUND AND PURPOSE: Despite being a first-line clinical drug, thienopyridines have many unsatisfactory aspects, including the low bioavailability of clopidogrel(CLP) and the high bleeding risk of prasugrel. We synthesized deuterium clopidogrel(D-CL, patented in China) to alleviate the deficiency of CLP in clinical, such as a slow onset, a greater influence of gene polymorphism, and a high frequency of drug-drug interaction. EXPERIMENTAL APPROACH: Molecular docking was used to analyze the affinity between D-CL and the P2Y12 receptor. The levels of active metabolites of D-CL were detected using HPLC/MS-MS and the activities of main metabolic enzymes were analyzed; Subsequently, platelet aggregation function, thrombus model were used to evaluate the pharmacodynamics of D-CL. Finally, the safety of D-CL were evaluated through examination of blood routine, PT, APTT, bleeding time, serological tests, liver pathological biopsy, liver cell apoptosis and detection of apoptosis-related proteins. KEY RESULTS: The introduction of deuterium made the binding of CLP to P2Y12 receptor more stable, improved the concentration of active metabolites, and substantially reduced the inhibition of major metabolic enzymes, including CYP2B6, CYP2C9, and CYP2C19, thereby, exerting better antiplatelet effects without increasing the risk of bleeding, along with a concomitant decrease in the apoptosis of hepatocytes.


Asunto(s)
Hidrógeno , Inhibidores de Agregación Plaquetaria , Clopidogrel/farmacología , Deuterio/farmacología , Ésteres del Ácido Fórmico , Hidrógeno/farmacología , Simulación del Acoplamiento Molecular , Agregación Plaquetaria , Inhibidores de Agregación Plaquetaria/farmacología , Tiofenos/farmacología
11.
Macromol Rapid Commun ; 43(8): e2200016, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35218095

RESUMEN

A zwitterionic polymeric hair-coated stainless steel mesh membrane is fabricated, which demonstrates efficient separation of oil/water mixtures and emulsions. The hairy coating of poly(divinylbenzene-co-vinylbenzene chloride) is generated by precipitation cationic polymerization, and subsequently grafting a zwitterionic polymer layer by atom transfer radical polymerization of sulfobetaine methacrylate. The microstructure of the hairy coating is tunable from an array of individual nanofibers to porous networks by interweaving of the hairs. The long-range attraction of zwitterionic polymers with water renders the coated mesh with excellent superhydrophilic and underwater superoleophobic performance. The coated mesh is highly antifouling to avoid the prehydration in conventional methods. Moreover, the microstructure is demonstrated to be responsible for the high separation efficiency of oil/water emulsion. Therefore, separation of oil/water mixtures and emulsions becomes easier by the coated mesh, which is promising in industrial oil field sewage treatment.

12.
J Sep Sci ; 45(2): 631-637, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34709732

RESUMEN

Sitagliptin is a dipeptidyl peptidase-IV inhibitor for the treatment of type 2 diabetes mellitus. In the present study, a sensitive and high-throughput quantitative method based on the direct analysis in real time tandem mass spectrometry has been developed and validated for the bioanalysis of sitagliptin in rat plasma without chromatographic separation. Sitagliptin and its internal standard retagliptin were detected in positive ion mode by multiple reaction monitoring transitions at m/z 408.2→235.0 and 465.2→260.1, respectively. The method includes a simple solid-phase extraction sample preparation procedure, through which appropriate and reproducible analytical results within the linear concentration range of 20-2000 ng/mL have been achieved. The intra- and interday precisions were <10.6% and the accuracies were ranging from -8.17 to 2.60%. This method has been successfully applied to the pharmacokinetic study of sitagliptin after single intravenous administration in rats. This approach shows considerable promise of direct analysis in real time tandem mass spectrometry method in the high-throughput bioanalysis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Fosfato de Sitagliptina , Animales , Cromatografía Líquida de Alta Presión/métodos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Plasma , Ratas , Reproducibilidad de los Resultados , Extracción en Fase Sólida , Espectrometría de Masas en Tándem/métodos
13.
Anal Biochem ; 635: 114435, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34715069

RESUMEN

A high-throughput quantitative analytical method based on Direct Analysis in Real Time tandem mass spectrometry (DART-MS/MS) has been developed and validated for the determination of diazepam in rat plasma, whereby analyzing of each sample needs merely 25 µL plasma, simple solid phase extraction sample preparation and 15 s acquisition time. The multiple reaction monitoring (MRM) transitions at m/z 285.2 â†’ 193.1 and 316.0 â†’ 270.0 were selected for the monitoring of diazepam and its internal standard clonazepam respectively. A good linearity within the range of 10-2000 ng/mL, an intra- and inter-day precisions within <7.78% as to an accuracy ranging from 1.04% to 7.92% have been achieved. The method has been successfully applied to the pharmacokinetic study of diazepam in rats' plasma after a single intragastric administration at a dose of 10 mg/kg. The results indicate that this method fulfills the requirements of the bioanalysis in sensitivity and accuracy. It shows considerable promise for application of DART-MS to the quantitative investigation of other drugs.


Asunto(s)
Diazepam/sangre , Diazepam/farmacocinética , Ensayos Analíticos de Alto Rendimiento , Animales , Diazepam/química , Femenino , Masculino , Estructura Molecular , Ratas , Espectrometría de Masas en Tándem/instrumentación , Factores de Tiempo
14.
Materials (Basel) ; 14(16)2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34443188

RESUMEN

Semi-solid billets of GH3536 alloy were prepared by semi-solid isothermal treatment of wrought superalloy method. GH3536 samples were soaked at several semi-solid temperatures (1350 °C, 1360 °C, 1364 °C, and 1367 °C) for 5-120 min. The effects of temperature and soaking time on the microstructure of GH3536 billets were studied. The results indicated that the microstructure was affected by coalescence mechanism, Ostwald ripening mechanism, and breaking up mechanism. Semi-solid microstructure of GH3536 alloy was composed of spherical solid particles and liquid phases, and the liquid phases affected the microstructure greatly. At 1350 °C, the coalescence mechanism was dominant at the early stage of isothermal treatment, then the Ostwald ripening mechanism played a major role for the longer soaking times. At higher temperatures, the breaking up mechanism occurred to form large irregular grains and small spherical grains. As the heating continued, the Ostwald ripening mechanism was dominant. However, at 1364 °C and 1367 °C, the solid grains had irregular shapes and large sizes when the isothermal time was 120 min. The optimum parameters for the preparation of GH3536 semi-solid billets were: temperature of 1364-1367 °C and soaking time of 60-90 min.

15.
Biomater Sci ; 9(12): 4440-4447, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33989374

RESUMEN

Nanoparticles with protein coronae can be used as promising multifunctional platforms for nanomedicine due to the possibility of performing surface functionalization on protein molecules and the achievement of biomedical properties. In this research, nanoparticles (NPs) with poly(ε-caprolactone) (PεCL) cores, gold NP (AuNP) shells and BSA coronae were fabricated by a self-assembly approach. The hydrophobic PεCL cores were used to encapsulate curcumin (CUR), the AuNP shells were decorated with a Raman probe, and the protein molecules in the coronae were functionalized with folic acid (FA). The self-assembly behaviors, drug delivery and the surface-enhanced Raman scattering (SERS) effect of the hybrid NPs were investigated in this research. The sizes of the core-shell-corona NPs (CSCNPs) are dependent on the initial concentrations of PεCL and AuNPs. The CUR in CSCNPs show enzyme-triggered release properties. The added lipase or trypsin can facilitate the CUR release from the hybrid NPs. The functionalization of CSCNPs with FA can significantly improve the internalization of NPs into 4T1 tumor cells due to the overexpressed folate receptors on the cells. In addition, the SERS effect of CSCNPs can be achieved when the AuNPs are decorated with 2-naphthalenethiol. The hybrid CSCNPs can be used as a promising platform for spatiotemporal drug delivery, cell imaging, and theranostics. Based on the same CSCNP platform, flexible functions can be adjusted according to the application needs.


Asunto(s)
Curcumina , Nanopartículas del Metal , Nanopartículas , Preparaciones Farmacéuticas , Sistemas de Liberación de Medicamentos , Oro
16.
Macromol Rapid Commun ; 42(4): e2000589, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33270313

RESUMEN

In these years, synthesis and applications of Janus structures have aroused great interest for large-scale applications in chemistry and materials science. Up to now, Janus particles with different morphologies and different functionalities have been synthesized in solutions, but the synthesis of Janus particles on solid surfaces has not been touched. In this research, Janus surface micelles (JSMs) are fabricated on the surfaces of silica particles by polymerization induced surface self-assembly (PISSA) approach, and the JSMs are used for enzyme immobilization. Usually, enzyme immobilization should be able to optimize the performance of the immobilized enzymes, and an ideal immobilization system must offer protection to the immobilized enzyme with retained bioactivity. Herein, it is demonstrated that JSMs on silica particles can be used as an ideal platform for the immobilization of enzymes. To prepare JSMs, poly(2-(dimethylamino) ethyl methacrylate) macro chain transfer agent (PDMAEMA-CTA) brushes on silica particles and poly(di(ethylene glycol) methyl ether methacrylate) macro CTA (PDEGMA-CTA) are employed in reversible addition-fragmentation chain transfer dispersion polymerization of styrene. After polymerization, JSMs with polystyrene cores and PDMAEMA/PDEGMA patches on the surfaces are prepared on silica particles. After quaternization reaction, the quaternized PDMAEMA patches are used for the immobilization of enzymes. Experimental results turn out that enhanced bioactivities of the immobilized enzymes are achieved and the enzyme molecules are well protected by surface Janus structures.


Asunto(s)
Enzimas Inmovilizadas , Dióxido de Silicio , Micelas , Polimerizacion , Poliestirenos
17.
Langmuir ; 36(42): 12649-12657, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33070609

RESUMEN

Surface biofunctionalization provides an approach to the fabrication of surfaces with improved biological and clinical performances. Biosurfaces have found increasing applications in many areas such as sensing, cell growth, and disease detection. Efficient synthesis of biosurfaces without damages to the structures and functionalities of biomolecules is a great challenge. Polymerization-induced surface self-assembly (PISSA) provides an effective approach to the synthesis of surface nanostructures with different compositions, morphologies, and properties. In this research, application of PISSA in the fabrication of biosurfaces is investigated. Two different reversible addition-fragmentation chain transfer (RAFT) agents, RAFT chain transfer agent (CTA) on silica particles (SiO2-CTA) and CTA on bovine serum albumin (BSA-CTA), were employed in RAFT dispersion polymerization of N-isopropylacrylamide (NIPAM) in water at a temperature above the lower critical solution temperature (LCST) of poly-(isopropylacrylamide) (PNIPAM). After polymerization, PNIPAM layers with BSA on the top surfaces are fabricated on the surfaces of silica particles. Transmission electron microscopy results show that the average PNIPAM layer thickness increases with monomer conversion. Kinetics study indicates that there is a turn point on a plot of ln([M]0/[M]t) versus polymerization time. After the critical point, surface coassembly of PNIPAM brushes and BSA-PNIPAM bioconjugates is performed on the silica particles. The secondary structure and the activity of BSA immobilized on top of the PNIPAM layers are basically kept unchanged in the PISSA process. To prepare permanently immobilized protein surfaces, PNIPAM layers on silica particles are cross-linked. BSA on the top surfaces presents a reversible "on-off" switching property. At a temperature below the LCST of PNIPAM, the activity of the immobilized BSA is retained; however, the BSA activity decreases significantly at a temperature above the LCST because of the hydrophobic interaction between PNIPAM and BSA. Based on this approach, many different biosurfaces can be fabricated and the materials will find applications in many fields, such as enzyme immobilization, drug delivery, and tissue engineering.

18.
Chempluschem ; 85(5): 998-1007, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32352243

RESUMEN

Studies on the fabrication of hierarchical surface nanostructures have significantly promoted the development of materials with new surface properties and functionalities. In this Minireview, progress on the fabrication of surface nanostructures based on surface organization of polymer brushes are outlined. In the past decades, self-assemblies of polymer brushes, including homopolymer, block-copolymer and mixed-polymer brushes, have aroused great interest in the fields of chemistry and materials science. Recent studies demonstrate that surface co-assemblies of polymer brushes and free polymer chains on solid surfaces are considered as an efficient approach to the preparation of hierarchical nanostructures. Some typical surface nanostructures and properties achieved through surface co-assembly approach are reviewed in this article. Meanwhile, the fundamental problems in the co-assembly approach are discussed and the potential applications of the hierarchical surface nanostructures are presented.

19.
Chemistry ; 25(72): 16712-16717, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31664741

RESUMEN

Protein nanogels have found a wide variety of applications, ranging from biocatalysis to drug/protein delivery. However, in practical applications, proteins in nanogels may suffer from enzymic hydrolysis and denaturation. Inspired by the structure and functionalities of the fowl eggshells, biomimetic mineralization of protein nanogels was studied in this research. Protein nanogels with embedded porcine pancreas lipase (PPL) in the cross-linked nanostructures were synthesized through the thiol-disulfide reaction between thiol-functionalized PPL and poly(N-isopropylacrylamide) with pendant pyridyl disulfide groups. The nanogels were further reacted with reduced bovine serum albumin (BSA) and BSA molecules were coated on the nanogels. Mineralization of BSA leads to the synthesis of biomineralized shells on the nanogels. With the growth of CaCO3 on the shells, the nanogels aggregate into suprastructures. Thermogravimetric analysis, XRD, dynamic light scattering, and TEM were employed to study the mechanism of the biomineralization process and analyze the structures of the mineralized nanogels. The biomineralized shells can effectively protect the PPL molecules from hydrolysis by trypsin; meanwhile, the nanosized channels on the mineralized shells allow the transport of small-molecule substrates across the shells. Bioactivity measurements indicate that PPL in the nanogels maintains more than 80 % bioactivity after biomineralization.

20.
Adv Drug Deliv Rev ; 143: 97-114, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31255595

RESUMEN

Nanocarriers (NCs) are a type of drug delivery system commonly used to regulate the pharmacokinetic and pharmacodynamic properties of drugs. Although a wide variety of NCs has been developed, relatively few have been registered for clinical trials and even fewer are clinically approved. Overt or potential toxicity, indistinct mechanisms of drug release and unsatisfactory pharmacokinetic behavior all contribute to their high failure rate during preclinical and clinical testing. These negative characteristics are not only due to the NCs themselves but also to the materials of the drug nanocarrier system (MDNS) that are released in vivo. In this article, we review the main analytical techniques used for bioassay of NCs and MDNS and their pharmacokinetics after administration by various routes. We anticipate our review will serve to improve the understanding of MDNS pharmacokinetics and facilitate the development of NC drug delivery systems.


Asunto(s)
Materiales Biocompatibles/farmacocinética , Portadores de Fármacos/farmacocinética , Nanopartículas , Animales , Humanos , Absorción Intestinal , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA