Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
PeerJ ; 12: e18334, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39465169

RESUMEN

Background: Type 2 diabetes mellitus (T2DM) is a common complex metabolic disorder that exhibits a strong genetic predisposition. 5,10-methylenetetrahydrofolate reductase (MTHFR) regulates folate metabolism, which has been proposed to be associated with T2DM, although the relationship is inconsistent among different geographical areas. This study aimed to investigate the effects of MTHFR C677T (rs1801133) and A1298C (rs1801131) loci polymorphisms on T2DM susceptibility in the population of the Dali area in Yunnan Province, China. Methods: This case-control study included 445 patients with T2DM and 272 healthy control individuals from the Dali area of Yunnan Province. Genotyping of the MTHFR gene polymorphisms was performed using the competitive allele-specific PCR (KASP) method. The effects of genetic variations of the MTHFR gene on T2DM risk were evaluated using odds ratios (OR) and 95% confidence intervals. Results: The results of the present study revealed that the TT genotype (OR = 1.750, P = 0.030) and the T allele (OR = 1.252, P = 0.047) at the MTHFR C677T locus were considerably associated with the increased odds of developing T2DM. In addition, the CC genotype (OR = 3.132, P = 0.032) at the MTHFR A1298C locus also substantially increased the odds of developing T2DM. The T-A haplotype (OR = 1.305, P = 0.030) of MTHFR C677T and A1298C exhibited the increased odds of developing T2DM. Biochemical index analyses showed that patients with T2DM who carried the CT or TT genotype of MTHFR C677T expressed substantially higher levels of fasting blood glucose (FBG), homocysteine (Hcy), and tumor necrosis factor-alpha (TNF-α) than those of the CC genotype. Moreover, the FBG and Hcy levels were considerably higher in patients with T2DM who carried the CC or AC genotype of MTHFR A1298C than those of the AA genotype. No obvious association was observed between these MTHFR polymorphisms and cardiovascular risk in T2DM. Conclusion: Our study suggests that the genetic variations of MTHFR C677T and A1298C are significantly associated with T2DM susceptibility in the population of the Dali area of Yunnan Province, China.


Asunto(s)
Diabetes Mellitus Tipo 2 , Predisposición Genética a la Enfermedad , Metilenotetrahidrofolato Reductasa (NADPH2) , Polimorfismo de Nucleótido Simple , Humanos , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/epidemiología , China/epidemiología , Femenino , Masculino , Persona de Mediana Edad , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad/genética , Genotipo , Anciano , Adulto
2.
Imeta ; 3(5): e236, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39429875

RESUMEN

The well-known bioinformatic software USEARCH v12 was open sourced. Its meaning encourages the microbiome research community to constantly develop excellent bioinformatic software based on the codes. The open source and popularization of artificial intelligence (AI) will make a better infrastructure for microbiome research.

3.
Imeta ; 3(5): e239, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39429882

RESUMEN

ImageGP is an extensively utilized, open-access platform for online data visualization and analysis. Over the past 7 years, it has catered to more than 700,000 usages globally, garnering substantial user feedback. The updated version, ImageGP 2 (available at https://www.bic.ac.cn/BIC), introduces a redesigned interface leveraging cutting-edge web technologies to enhance functionality and user interaction. Key enhancements include the following: (i) Addition of modules for data format transformation, facilitating operations such as matrix merging, subsetting, and transformation between long and wide formats. (ii) Streamlined workflows with features like preparameter selection data validation and grouping of parameters with similar attributes. (iii) Expanded repertoire of visualization functions and analysis tools, including Weighted Gene Co-Expression Network Analysis, differential gene expression analysis, and FASTA sequence processing. (iv) Personalized user space for uploading large data sets, tracking analysis history, and sharing reproducible analysis data, scripts, and results. (v) Enhanced user support through a simplified error debugging feature accessible with a single click. (vi) Introduction of an R package, ImageGP, enabling local data visualization and analysis. These updates position ImageGP 2 as a versatile tool serving both wet-lab and dry-lab researchers with expanded capabilities.

4.
Theranostics ; 14(12): 4622-4642, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239516

RESUMEN

Rationale: Consumption of a high-fat diet (HFD) has been implicated in cognitive deficits and gastrointestinal dysfunction in humans, with the gut microbiota emerging as a pivotal mediator of these diet-associated pathologies. The introduction of plant-based polysaccharides into the diet as a therapeutic strategy to alleviate such conditions is gaining attention. Nevertheless, the mechanistic paradigm by which polysaccharides modulate the gut microbiota remains largely undefined. This study investigated the mechanisms of action of Eucommiae cortex polysaccharides (EPs) in mitigating gut dysbiosis and examined their contribution to rectifying diet-related cognitive decline. Methods: Initially, we employed fecal microbiota transplantation (FMT) and gut microbiota depletion to verify the causative role of changes in the gut microbiota induced by HFD in synapse engulfment-dependent cognitive impairments. Subsequently, colonization of the gut of chow-fed mice with Escherichia coli (E. coli) from HFD mice confirmed that inhibition of Proteobacteria by EPs was a necessary prerequisite for alleviating HFD-induced cognitive impairments. Finally, supplementation of HFD mice with butyrate and treatment of EPs mice with GW9662 demonstrated that EPs inhibited the expansion of Proteobacteria in the colon of HFD mice by reshaping the interactions between the gut microbiota and colonocytes. Results: Findings from FMT and antibiotic treatments demonstrated that HFD-induced cognitive impairments pertaining to neuronal spine loss were contingent on gut microbial composition. Association analysis revealed strong associations between bacterial taxa belonging to the phylum Proteobacteria and cognitive performance in mice. Further, introducing E. coli from HFD-fed mice into standard diet-fed mice underscored the integral role of Proteobacteria proliferation in triggering excessive synaptic engulfment-related cognitive deficits in HFD mice. Crucially, EPs effectively counteracted the bloom of Proteobacteria and subsequent neuroinflammatory responses mediated by microglia, essential for cognitive improvement in HFD-fed mice. Mechanistic insights revealed that EPs promoted the production of bacteria-derived butyrate, thereby ameliorating HFD-induced colonic mitochondrial dysfunction and reshaping colonocyte metabolism. This adjustment curtailed the availability of growth substrates for facultative anaerobes, which in turn limited the uncontrolled expansion of Proteobacteria. Conclusions: Our study elucidates that colonocyte metabolic disturbances, which promote Proteobacteria overgrowth, are a likely cause of HFD-induced cognitive deficits. Furthermore, dietary supplementation with EPs can rectify behavioral dysfunctions associated with HFD by modifying gut microbiota-colonocyte interactions. These insights contribute to the broader understanding of the modulatory effects of plant prebiotics on the microbiota-gut-brain axis and suggest a potential therapeutic avenue for diet-associated cognitive dysfunction.


Asunto(s)
Disfunción Cognitiva , Dieta Alta en Grasa , Disbiosis , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Polisacáridos , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Dieta Alta en Grasa/efectos adversos , Ratones , Disfunción Cognitiva/terapia , Polisacáridos/farmacología , Masculino , Disbiosis/terapia , Colon/microbiología , Escherichia coli , Butiratos/metabolismo , Proteobacteria/aislamiento & purificación , Proteobacteria/efectos de los fármacos , Modelos Animales de Enfermedad
5.
J Genet Genomics ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293510

RESUMEN

Over the past decade, nanopore sequencing has experienced significant advancements and changes, transitioning from an initially emerging technology to a significant instrument in the field of genomic sequencing. However, as advancements in next-generation sequencing technology persist, nanopore sequencing also improves. This paper reviews the developments, applications, and outlook on nanopore sequencing technology. Currently, nanopore sequencing supports both DNA and RNA sequencing, making it widely applicable in areas such as telomere-to-telomere (T2T) genome assembly, direct RNA sequencing (DRS), and metagenomics. The openness and versatility of nanopore sequencing have established it as a preferred option for an increasing number of research teams, signaling a transformative influence on life science research. As nanopore sequencing technology advances, it provides a faster, more cost-effective approach with extended read lengths, demonstrating the significant potential for complex genome assembly, pathogen detection, environmental monitoring, and human disease research, offering a fresh perspective in sequencing technologies.

6.
Imeta ; 3(4): e210, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39135693

RESUMEN

Within dynamic agroecosystems, microbes can act as key intermediaries, facilitating spatiotemporal communication among plants. Future research could categorize key plant genes involved in plant-microbe interactions into microbiome-shaping genes (Ms genes) and microbiome-responsive genes (Mr genes), potentially leading to the construction of spatiotemporal molecular networks with microbes as intermediaries.

7.
J Org Chem ; 89(17): 12508-12513, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39135492

RESUMEN

Thioesters make up an important class of bioactive compounds. Due to their chemoselectivity, they have been widely used in the synthesis of a wide range of complex bioactive molecules and natural products. At present, chemists have developed a variety of methods for the preparation of thioester compounds. However, these methods usually require the use of transition metal catalysis or harsh reaction conditions. The strategy of synthesizing thioester compounds via visible light-induced electron donor-acceptor (EDA) complex reactions avoids the problems associated with conventional methods through the development of photocatalysis. Here we report a sustainable method for thiocarbonylating aryl sulfonium salts via a visible light-induced EDA complex process without transition metals.

8.
Int J Pharm ; 663: 124568, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39137822

RESUMEN

Deficiency of endogenous hydrogen peroxide and insufficient intracellular acidity are usually two important factors limiting chemodynamic therapy (CDT). Here we report a glutathione-responsive nanomedicine that can provide a suitable environment for CDT by inhibiting dual-enzymes simultaneously. The nanomedicine is constructed by encapsulation of a novel hydrogen sulfide donor in nanomicelle assembled by glutathione-responsive amphiphilic polymer. In response to intracellular glutathione, the nanomedicine can efficiently release the active ingredients hydrogen sulfide, carbonic anhydrase inhibitor and ferrocene. The hydrogen sulfide can increase the concentrations of hydrogen peroxide and lactic acid by inhibiting catalase and enhancing glycolysis. The carbonic anhydrase inhibitor can further induce intratumoral acidosis by inhibiting the function of carbonic anhydrase IX. Therefore, the nanomedicine can provide more efficient reaction conditions for the ferrocene-mediated Fenton reaction to generate abundant toxic hydroxyl radicals. In vivo results show that the combination of enhanced CDT and acidosis can effectively inhibit tumor growth. This design of nanomedicine provides a promising dual-enzyme inhibiting strategy to enhance antitumor efficacy of CDT.


Asunto(s)
Acidosis , Compuestos Ferrosos , Glutatión , Sulfuro de Hidrógeno , Nanomedicina , Animales , Humanos , Acidosis/tratamiento farmacológico , Nanomedicina/métodos , Línea Celular Tumoral , Glutatión/metabolismo , Compuestos Ferrosos/química , Compuestos Ferrosos/administración & dosificación , Metalocenos/química , Neoplasias/tratamiento farmacológico , Inhibidores de Anhidrasa Carbónica/administración & dosificación , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/química , Ratones Endogámicos BALB C , Peróxido de Hidrógeno , Ratones , Micelas , Femenino , Nanopartículas/química , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/farmacología , Ratones Desnudos , Polímeros/química , Ácido Láctico/química , Anhidrasa Carbónica IX/antagonistas & inhibidores , Anhidrasa Carbónica IX/metabolismo , Catalasa/metabolismo
9.
Diabetes Metab J ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39069376

RESUMEN

Background: Diabetes mellitus (DM) is a chronic metabolic disease that poses serious threats to human physical and mental health worldwide. The PDZ domain-containing 8 (PDZD8) protein mediates mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) formation in mammals. We explored the role of PDZD8 in DM and investigated its potential mechanism of action. Methods: High-fat diet (HFD)- and streptozotocin-induced mouse DM and palmitic acid (PA)-induced insulin 1 (INS-1) cell models were constructed. PDZD8 expression was detected using immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting. MAM formation, interactions between voltage-dependent anion-selective channel 1 (VDAC1) and inositol 1,4,5-triphosphate receptor type 1 (IP3R1), pancreatic ß-cell apoptosis and proliferation were detected using transmission electron microscopy (TEM), proximity ligation assay (PLA), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, immunofluorescence staining, and Western blotting. The mitochondrial membrane potential, cell apoptosis, cytotoxicity, and subcellular Ca2+ localization in INS-1 cells were detected using a JC-1 probe, flow cytometry, and an lactate dehydrogenase kit. Results: PDZD8 expression was up-regulated in the islets of HFD mice and PA-treated pancreatic ß-cells. PDZD8 knockdown markedly shortened MAM perimeter, suppressed the expression of MAM-related proteins IP3R1, glucose-regulated protein 75 (GRP75), and VDAC1, inhibited the interaction between VDAC1 and IP3R1, alleviated mitochondrial dysfunction and ER stress, reduced the expression of ER stress-related proteins, and decreased apoptosis while increased proliferation of pancreatic ß-cells. Additionally, PDZD8 knockdown alleviated Ca2+ flow into the mitochondria and decreased cyclophilin D (Cypd) expression. Cypd overexpression alleviated the promoting effect of PDZD8 knockdown on the apoptosis of ß-cells. Conclusion: PDZD8 knockdown inhibited pancreatic ß-cell death in DM by alleviated ER-mitochondria contact and the flow of Ca2+ into the mitochondria.

10.
Imeta ; 3(2): e180, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882491

RESUMEN

Inflammatory bowel disease (IBD) is a significant global health concern. The gut microbiota plays an essential role in the onset and development of IBD. Sanghuangporus (SH), a traditional Chinese medicinal mushroom, has excellent anti-inflammatory effects and is effective at modulating the gut microbiota. Despite these attributes, the specific anticolitic effects of SH and the mechanisms through which the gut microbiota mediates its benefits remain unclear. Herein, we demonstrated that polyphenol-rich extract from SH effectively alleviated the pathological symptoms of dextran sodium sulfate (DSS)-induced colitis in mice by modulating the gut microbiota. Treatment with SH distinctly enriched Alistipes, especially Alistipes onderdonkii, and its metabolite 5-hydroxyindole-3-acetic acid (5HIAA). Oral gavage of live A. onderdonkii or 5HIAA potently mitigated DSS-induced colitis in mice. Moreover, both 5HIAA and SH significantly activated the aromatic hydrocarbon receptor (AhR), and the administration of an AhR antagonist abrogated their protective effects against colitis. These results underscore the potent efficacy of SH in diminishing DSS-induced colitis through the promotion of A. onderdonkii and 5HIAA, ultimately activating AhR signaling. This study unveils potential avenues for developing therapeutic strategies for colitis based on the interplay between SH and the gut microbiota.

11.
Imeta ; 3(2): e178, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882492

RESUMEN

The advent of generative artificial intelligence (AI) technologies marks a transformative moment for the scientific sphere, unlocking novel avenues to elevate scientific writing's efficiency and quality, expedite insight discovery, and enhance code development processes. Essential to leveraging these advancements is prompt engineering, a method that enhances AI interaction efficiency and quality. Despite its benefits, effective application requires blending researchers' expertise with AI, avoiding overreliance. A balanced strategy of integrating AI with independent critical thinking ensures the advancement and quality of scientific research, leveraging innovation while maintaining research integrity.

12.
Imeta ; 3(3): e185, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38898981

RESUMEN

The vaginal microbiome plays an essential role in the reproductive health of human females. As infertility increases worldwide, understanding the roles that the vaginal microbiome may have in infertility and in vitro fertilization (IVF) treatment outcomes is critical. To determine the vaginal microbiome composition of 1411 individuals (1255 undergoing embryo transplantation) and their associations with reproductive outcomes, clinical and biochemical features are measured, and vaginal samples are 16S rRNA sequenced. Our results suggest that both too high and too low abundance of Lactobacillus is not beneficial for pregnancy; a moderate abundance is more beneficial. A moderate abundance of Lactobacillus crispatus and Lactobacillus iners (~80%) (with a pregnancy rate of I-B: 54.35% and III-B: 57.73%) is found beneficial for pregnancy outcomes compared with a higher abundance (>90%) of Lactobacillus (I-A: 44.81% and III-A: 51.06%, respectively). The community state type (CST) IV-B (contains a high to moderate relative abundance of Gardnerella vaginalis) shows a similar pregnant ratio (48.09%) with I-A and III-A, and the pregnant women in this CST have a higher abundance of Lactobacillus species. Metagenome analysis of 71 samples shows that nonpregnant women are detected with more antibiotic-resistance genes, and Proteobacteria and Firmicutes are the main hosts. The inherent differences within and between women in different infertility groups suggest that vaginal microbes might be used to detect infertility and potentially improve IVF outcomes.

13.
Imeta ; 3(3): e184, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38898979

RESUMEN

Venn diagrams serve as invaluable tools for visualizing set relationships due to their ease of interpretation. Widely applied across diverse disciplines such as metabolomics, genomics, transcriptomics, and proteomics, their utility is undeniable. However, the operational complexity has been compounded by the absence of standardized data formats and the need to switch between various platforms for generating different Venn diagrams. To address these challenges, we introduce the EVenn platform, a versatile tool offering a unified interface for efficient data exploration and visualization of diverse Venn diagrams. EVenn (http://www.ehbio.com/test/venn) streamlines the data upload process with a standardized format, enhancing the capabilities for multimodule analysis. This comprehensive protocol outlines various applications of EVenn, featuring representative results of multiple Venn diagrams, data uploads in the centralized data center, and step-by-step case demonstrations. Through these functionalities, EVenn emerges as a valuable and user-friendly tool for the in-depth exploration of multiomics data.

14.
Imeta ; 3(1): e175, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38868508

RESUMEN

The increasing application of meta-omics approaches to investigate the structure, function, and intercellular interactions of microbial communities has led to a surge in available data. However, this abundance of human and environmental microbiome data has exposed new scalability challenges for existing bioinformatics tools. In response, we introduce Wekemo Bioincloud-a specialized platform for -omics studies. This platform offers a comprehensive analysis solution, specifically designed to alleviate the challenges of tool selection for users in the face of expanding data sets. As of now, Wekemo Bioincloud has been regularly equipped with 22 workflows and 65 visualization tools, establishing itself as a user-friendly and widely embraced platform for studying diverse data sets. Additionally, the platform enables the online modification of vector outputs, and the registration-independent personalized dashboard system ensures privacy and traceability. Wekemo Bioincloud is freely available at https://www.bioincloud.tech/.

15.
Int J Biol Macromol ; 271(Pt 2): 132593, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38788865

RESUMEN

This study delves into the effects of curdlan integration and thermal sterilization on the rheological properties, structure, and quality attributes of concentrated rice starch gel. Acting as a heat-set polysaccharide, curdlan established a dual-network gel structure with rice starch gel, displaying strong interactions with rice starch, as confirmed by confocal laser scanning microscopy and Fourier-transform infrared spectroscopy. The addition of curdlan expedited the gel formation of rice starch, yielding a denser gel structure. Consequently, this enhanced G', solid-like behavior, textural properties, and cooking quality while reducing frequency-dependence. Given the cooling-induced gelation behavior of pure rice starch, thermal treatment disrupted inter-chain hydrogen bonding, compromising the structural integrity of the gel. This disruption manifested in a softer texture and diminished mechanical properties and cooking quality. Notably, this decline in mechanical properties and cooking quality of rice starch gel was markedly ameliorated with the incorporation of curdlan, particularly at a content of ≥1.0 %. Compared with pure RS, 1.0 % CD inclusion showed a reduction in cooking breakage rate by 30.69 % and an increase in hardness by 38.04 %. This work provides valuable insights for the advancement of fresh starch gel-based foods that exhibit exceptional quality and an extended shelf life.


Asunto(s)
Geles , Oryza , Reología , Almidón , beta-Glucanos , Oryza/química , beta-Glucanos/química , Almidón/química , Geles/química , Esterilización/métodos , Calor , Espectroscopía Infrarroja por Transformada de Fourier , Culinaria/métodos
16.
J Colloid Interface Sci ; 670: 279-287, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38763024

RESUMEN

Nanomedicines that combine reactive oxygen species (ROS)-responsive polyprodrug and photodynamic therapy have shown great potential for improving treatment efficacy. However, the consumption of ROS by overexpressed glutathione in tumor cells is a major obstacle for achieving effective ROS amplification and prodrug activation. Herein, we report a polyprodrug-based nanoparticle that can realize ROS amplification and cascaded drug release. The nanoparticle can respond to the high level of hydrogen peroxide in tumor microenvironment, achieving self-destruction and release of quinone methide. The quinone methide depletes intracellular glutathione and thus decreases the antioxidant capacity of cancer cells. Under laser irradiation, a large amount of ROS will be generated to induce cell damage and prodrug activation. Therefore, the glutathione-depleting polyprodrug nanoparticles can efficiently inhibit tumor growth by enhanced photodynamic therapy and cascaded locoregional chemotherapy.


Asunto(s)
Antineoplásicos , Glutatión , Nanopartículas , Fotoquimioterapia , Profármacos , Especies Reactivas de Oxígeno , Glutatión/metabolismo , Glutatión/química , Nanopartículas/química , Profármacos/farmacología , Profármacos/química , Humanos , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Animales , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/administración & dosificación , Ratones , Ensayos de Selección de Medicamentos Antitumorales , Tamaño de la Partícula , Peróxido de Hidrógeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Propiedades de Superficie , Línea Celular Tumoral , Liberación de Fármacos , Microambiente Tumoral/efectos de los fármacos , Indolquinonas
17.
Microbiol Res ; 285: 127747, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38739956

RESUMEN

BACKGROUND: The global dissemination of the multidrug resistance efflux pump gene cluster tmexCD-toprJ has greatly weakened the effects of multiple antibiotics, including tigecycline. However, the potential origin and transmission mechanisms of the gene cluster remain unclear. METHODS: Here, we concluded a comprehensive bioinformatics analysis on integrated 73,498 bacterial genomes, including Pseudomonas spp., Klebsiella spp., Aeromonas spp., Proteus spp., and Citrobacter spp., along with 1,152 long-read metagenomic datasets to trace the origin and propagation of tmexCD-toprJ. RESULTS: Our results demonstrated that tmexCD-toprJ was predominantly found in Pseudomonas aeruginosa sourced from human hosts in Asian countries and North American countries. Phylogenetic and genomic feature analyses showed that tmexCD-toprJ was likely evolved from mexCD-oprJ of some special clones of P. aeruginosa. Furthermore, metagenomic analysis confirmed that P. aeruginosa is the only potential ancestral bacterium for tmexCD-toprJ. A putative mobile genetic structure harboring tmexCD-toprJ, int-int-hp-hp-tnfxB-tmexCD-toprJ, was the predominant genetic context of tmexCD-toprJ across various bacterial genera, suggesting that the two integrase genes play a pivotal role in the horizontal transmission of tmexCD-toprJ. CONCLUSIONS: Based on these findings, it is almost certain that the tmexCD-toprJ gene cluster was derived from P. aeruginosa and further spread to other bacteria.


Asunto(s)
Antibacterianos , Genoma Bacteriano , Metagenómica , Familia de Multigenes , Filogenia , Pseudomonas aeruginosa , Tigeciclina , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efectos de los fármacos , Tigeciclina/farmacología , Antibacterianos/farmacología , Humanos , Farmacorresistencia Bacteriana Múltiple/genética , Genómica , Proteínas Bacterianas/genética , Biología Computacional , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana/genética
18.
Food Chem ; 451: 139377, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38703722

RESUMEN

Environmental-origin microbiota significantly influences Red Heart Qu (RH_Qu) stratification, but their microbial migration and metabolic mechanisms remain unclear. Using high-throughput sequencing and metabolomics, we divided the stratification of RH_Qu into three temperature-based stages. Phase I features rising temperatures, causing microbial proliferation and a two-layer division. Phase II, characterized by peak temperatures, sees the establishment of thermotolerant species like Bacillus, Thermoactinomyces, Rhodococcus, and Thermoascus, forming four distinct layers and markedly altering metabolite profiles. The Huo Quan (HQ), developing from the Pi Zhang (PZ), is driven by the tyrosine-melanin pathway and increased MRPs (Maillard reaction products). The Hong Xin evolves from the Rang, associated with the phenylalanine-coumarin pathway and QCs (Quinone Compounds) production. Phase III involves the stabilization of the microbial and metabolic profile as temperatures decline. These findings enhance our understanding of RH_Qu stratification and offer guidance for quality control in its fermentation process.


Asunto(s)
Bacterias , Microbiota , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Fermentación , Metabolómica , Temperatura , Alimentos Fermentados/análisis , Alimentos Fermentados/microbiología
19.
Brain Res Bull ; 212: 110964, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670471

RESUMEN

Ischemic stroke (IS), primarily caused by cerebrovascular obstruction, results in severe neurological deficits and has emerged as a leading cause of death and disability worldwide. Recently, there has been increasing exploration of the neuroprotective properties of the inert gas argon. Argon has exhibited impressive neuroprotection in many in vivo and ex vivo experiments without signs of adverse effects, coupled with the advantages of being inexpensive and easily available. However, the efficient administration strategy and underlying mechanisms of neuroprotection by argon in IS are still unclear. This review summarizes current research on the neuroprotective effects of argon in IS with the goal to provide effective guidance for argon application and to elucidate the potential mechanisms of argon neuroprotection. Early and appropriate argon administration at as high a concentration as possible offers favorable neuroprotection in IS. Argon inhalation has been shown to provide some long-term protection benefits. Argon provides the anti-oxidative stress, anti-inflammatory and anti-apoptotic cytoprotective effects mainly around Toll-like receptor 2/4 (TLR2/4), mediated by extracellular signal-regulated kinase 1/2 (ERK1/2), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), nuclear factor kappa-B (NF-ĸB) and B-cell leukemia/lymphoma 2 (Bcl-2). Therefore, argon holds significant promise as a novel clinical neuroprotective gas agent for ischemic stroke after further researches to identify the optimal application strategy and elucidate the underlying mechanism.


Asunto(s)
Argón , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Argón/farmacología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Animales , Humanos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Neuroprotección/efectos de los fármacos , Neuroprotección/fisiología , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo
20.
Langmuir ; 40(16): 8608-8616, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38603547

RESUMEN

In this work, an effective strategy for the large-scale fabrication of highly porous CuO/Cu2O/Cu/carbon (P-Cu-C) has been established. Cu-cross-linked aerogels were first continuously prepared using a continuous flow mode to form uniform beads, which were transformed into P-Cu-C with a subsequent pyrolysis process. Various pyrolysis temperatures were used to form a series of P-Cu-C including P-Cu-C-250, P-Cu-C-200, P-Cu-C-350, and P-Cu-C-450 to investigate suitable pyrolysis conversion processes. The obtained P-Cu-C series were utilized as anodes of lithium-ion batteries, in which P-Cu-C-250 exhibited a higher reversible gravimetric capacity, excellent rate capability, and superior cycle stability. The enhanced behavior of P-Cu-C-250 was benefitted from the synergistic interaction between uniformly dispersed CuO, Cu2O, Cu nanoparticles, and highly graphitized carbon with a large surface area and highly porous structure. More importantly, the preparation of P-Cu-C-250 could be scaled up by taking advantage of the continuous flow synthesis mode, which may provide pilot- or industrial-scale applications. The large-scale fabrication proposed here may give a universal method to fabricate highly porous metal oxide-carbon anode materials for electrochemical energy conversion and storage applications. Porous CuO/Cu2O/Cu/carbon derived from Cu-crosslinked aerogels was used as Li-ion battery anode materials, exhibiting a high reversible areal capacity, large gravimetric capacity, superior cycling performance, and excellent rate capacity. A continuous preparation method is established to ensure the product scaled up.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...