Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Gene ; 926: 148623, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38821328

RESUMEN

Topping, an important tree shaping and pruning technique, can promote the outgrowth of citrus axillary buds. However, the underlying molecular mechanism is still unclear. In this study, spring shoots of Citrus reticulata 'Huagan No.2' were topped and transcriptome was compared between axillary buds of topped and untopped shoots at 6 and 11 days after topping (DAT). 1944 and 2394 differentially expressed genes (DEGs) were found at 6 and 11 DAT, respectively. KEGG analysis revealed that many DEGs were related to starch and sucrose metabolism, signal transduction of auxin, cytokinin and abscisic acid. Specially, transcript levels of auxin synthesis, transport, and signaling-related genes (SAURs and ARF5), cytokinin signal transduction related genes (CRE1, AHP and Type-A ARRs), ABA signal responsive genes (PYL and ABF) were up-regulated by topping; while transcript levels of auxin receptor TIR1, auxin responsive genes AUX/IAAs, ABA signal transduction related gene PP2Cs and synthesis related genes NCED3 were down-regulated. On the other hand, the contents of sucrose and fructose in axillary buds of topped shoots were significantly higher than those in untopped shoots; transcript levels of 16 genes related to sucrose synthase, hexokinase, sucrose phosphate synthase, endoglucanase and glucosidase, were up-regulated in axillary buds after topping. In addition, transcript levels of genes related to trehalose 6-phosphate metabolism and glycolysis/tricarboxylic acid (TCA) cycle, as well to some transcription factors including Pkinase, Pkinase_Tyr, Kinesin, AP2/ERF, P450, MYB, NAC and Cyclin_c, significantly responded to topping. Taken together, the present results suggested that topping promoted citrus axillary bud outgrowth through comprehensively regulating plant hormone and carbohydrate metabolism, as well as signal transduction. These results deepened our understanding of citrus axillary bud outgrowth by topping and laid a foundation for further research on the molecular mechanisms of citrus axillary bud outgrowth.


Asunto(s)
Citrus , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Citrus/genética , Citrus/crecimiento & desarrollo , Citrus/metabolismo , Perfilación de la Expresión Génica/métodos , Transcriptoma , Transducción de Señal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/genética , Ácidos Indolacéticos/metabolismo , Redes Reguladoras de Genes
2.
J Transl Med ; 22(1): 485, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773518

RESUMEN

BACKGROUND: The maintenance of mitochondrial homeostasis is critical for tumor initiation and malignant progression because it increases tumor cell survival and growth. The molecular events controlling mitochondrial integrity that facilitate the development of hepatocellular carcinoma (HCC) remain unclear. Here, we report that UBX domain-containing protein 1 (UBXN1) hyperactivation is essential for mitochondrial homeostasis and liver tumorigenesis. METHODS: Oncogene-induced mouse liver tumor models were generated with the Sleeping Beauty (SB) transposon delivery system. Assessment of HCC cell growth in vivo and in vitro, including tumour formation, colony formation, TUNEL and FACS assays, was conducted to determine the effects of UBXN1 on HCC cells, as well as the involvement of the UBXN1-prohibitin (PHB) interaction in mitochondrial function. Coimmunoprecipitation (Co-IP) was used to assess the interaction between UBXN1 and PHB. Liver hepatocellular carcinoma (LIHC) datasets and HCC patient samples were used to assess the expression of UBXN1. RESULTS: UBXN1 expression is commonly upregulated in human HCCs and mouse liver tumors and is associated with poor overall survival in HCC patients. UBXN1 facilitates the growth of human HCC cells and promotes mouse liver tumorigenesis driven by the NRas/c-Myc or c-Myc/shp53 combination. UBXN1 interacts with the inner mitochondrial membrane protein PHB and sustains PHB expression. UBXN1 inhibition triggers mitochondrial damage and liver tumor cell apoptosis. CONCLUSIONS: UBXN1 interacts with PHB and promotes mitochondrial homeostasis during liver tumorigenesis.


Asunto(s)
Carcinogénesis , Carcinoma Hepatocelular , Homeostasis , Neoplasias Hepáticas , Mitocondrias , Prohibitinas , Animales , Humanos , Ratones , Apoptosis , Carcinogénesis/patología , Carcinogénesis/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Mitocondrias/metabolismo , Unión Proteica , Proteínas Represoras/metabolismo
3.
Front Plant Sci ; 14: 1294086, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38078093

RESUMEN

Citrus, one of the most widely cultivated fruit crops in the world, relies on arbuscular mycorrhizal fungi (AMF) to absorb nutrients and water from soil. However, the molecular mechanism of AM symbiosis (AMS) in citrus in general have largely been understudied. Here, using a TMT labeling proteomic approach, we identified 365 differentially expressed proteins (DEPs) in roots of Poncirus trifoliata (a common citrus rootstock) upon Rhizophagus irregularis colonization as compared with uninoculated roots, of which 287 were up-regulated and 78 were down-regulated. GO analysis revealed that the DEPs were mainly involved in biological processes such as negative regulation of endopeptidase inhibitor activity, negative regulation of endopeptidase, one-carbon metabolic process and carbohydrate metabolic process. KEGG enrichment analysis indicated that the DEPs were mainly involved in regulating metabolic pathways such as fatty acid biosynthesis, phenylpropanoid biosynthesis and carbon metabolism. Furthermore, 194 of the 365 DEPs were found to be associated with AMS-responsive genes by association analysis with our previous transcriptomes data, which highlighted the important roles of these proteins in AMS. One of the 194 DEPs, neutral ceramidase (PtNCER), was further chosen for function analysis via RNAi interfering its homologous gene MtNCER in a mycorrhizal model plant Medicago truncatula, which confirmed a positive role of NCER in AM establishment. Our results provided basic data and key candidate genes for genetic improvement of efficient nutrient uptake through AM establishment in citrus and other crops.

4.
Hepatology ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38051955

RESUMEN

BACKGROUND AND AIMS: Liver tumorigenesis encompasses oncogenic activation and self-adaptation of various biological processes in premalignant hepatocytes to circumvent the pressure of cellular stress and host immune control. Ubiquitin regulatory X domain-containing proteins (UBXNs) participate in the regulation of certain signaling pathways. However, whether UBXN proteins function in the development of liver cancer remains unclear. APPROACH AND RESULTS: Here, we demonstrated that UBXN9 (Alveolar Soft Part Sarcoma Chromosomal Region Candidate Gene 1 Protein/Alveolar Soft Part Sarcoma Locus) expression was decreased in autochthonous oncogene-induced mouse liver tumors and ~47.7% of human HCCs, and associated with poor prognosis in patients with HCC. UBXN9 attenuated liver tumorigenesis induced by different oncogenic factors and tumor growth of transplanted liver tumor cells in immuno-competent mice. Mechanistically, UBXN9 significantly inhibited the function of the RNA exosome, resulting in increased expression of RLR-stimulatory RNAs and activation of the retinoic acid-inducible gene-I-IFN-Ι signaling in tumor cells, and hence potentiated T cell recruitment and immune control of tumor growth. Abrogation of the CD8 + T cell response or inhibition of tumor cell retinoic acid-inducible gene-I signaling efficiently counteracted the UBXN9-mediated suppression of liver tumor growth. CONCLUSIONS: Our results reveal a modality in which UBXN9 promotes the stimulatory RNA-induced retinoic acid-inducible gene-I-interferon signaling that induces anti-tumor T cell response in liver tumorigenesis. Targeted manipulation of the UBXN9-RNA exosome circuit may have the potential to reinstate the immune control of liver tumor growth.

5.
Front Plant Sci ; 14: 1289959, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37941669

RESUMEN

Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense tropical race4 (Foc TR4) is one of the most destructive soil-borne fungal diseases and currently threatens banana production around the world. Until now, there is lack of an effective method to control banana Fusarium wilt. Therefore, it is urgent to find an effective and eco-friendly strategy against the fungal disease. In this study, a strain of Trichoderma sp. N4-3 was isolated newly from the rhizosphere soil of banana plants. The isolate was identified as Trichoderma parareesei through analysis of TEF1 and RPB2 genes as well as morphological characterization. In vitro antagonistic assay demonstrated that strain N4-3 had a broad-spectrum antifungal activity against ten selected phytopathogenic fungi. Especially, it demonstrated a strong antifungal activity against Foc TR4. The results of the dual culture assay indicated that strain N4-3 could grow rapidly during the pre-growth period, occupy the growth space, and secrete a series of cell wall-degrading enzymes upon interaction with Foc TR4. These enzymes contributed to the mycelial and spore destruction of the pathogenic fungus by hyperparasitism. Additionally, the sequenced genome proved that strain N4-3 contained 21 genes encoding chitinase and 26 genes encoding ß-1,3-glucanase. The electron microscopy results showed that theses cell wall-degrading enzymes disrupted the mycelial, spore, and cell ultrastructure of Foc TR4. A pot experiment revealed that addition of strain N4-3 significantly reduced the amount of Foc TR4 in the rhizosphere soil of bananas at 60 days post inoculation. The disease index was decreased by 45.00% and the fresh weight was increased by 63.74% in comparison to the control. Hence, Trichoderma parareesei N4-3 will be a promising biological control agents for the management of plant fungal diseases.

6.
Plant Physiol Biochem ; 203: 108056, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37783072

RESUMEN

To investigate the mechanism for drought promoting soluble sugar accumulation will be conducive to the enhancement of citrus fruit quality as well as stress tolerance. Fruit sucrose mainly derives from source leaves. Its accumulation in citrus fruit cell vacuole involves in two processes of unloading in the fruit segment membrane (SM) and translocating to the vacuole of fruit juice sacs (JS). Here, transcript levels of 47 sugar metabolism- and transport-related genes were compared in fruit SM or JS between drought and control treatments. Results indicated that transcript levels of cell wall invertase genes (CwINV2/6) and sucrose synthase genes (SUS2/6) in the SM were significantly increased by the drought. Moreover, transcript levels of SWEET genes (CsSWEET1/2/4/5/9) and monosaccharide transporter gene (CsPMT3) were significantly increased in SM under drought treatment. On the other hand, SUS1/3 and vacuolar invertase (VINV) transcript levels were significantly increased in JS by drought; CsPMT4, sucrose transporter gene 2 (CsSUT2), tonoplast monosaccharide transporter gene 2 (CsTMT2), sugar transport protein gene 1 (CsSTP1), two citrus type I V-PPase genes (CsVPP1, and CsVPP2) were also significantly increased in drought treated JS. Collectively, the imposition of drought stress resulted in more soluble sugar accumulation through enhancing sucrose download by enhancing sink strength- and transport ability-related genes, such as CwINV2/6, SUS2/6, CsSWEET1/2/4/5/9, and CsPMT3, in fruit SM, and soluble sugar storage ability by increasing transcript levels of genes, such as CsPMT4, VINV, CsSUT2, CsTMT2, CsSTP1, CsVPP1, and CsVPP2, in fruit JS.


Asunto(s)
Citrus , Azúcares , Azúcares/metabolismo , Frutas/metabolismo , Citrus/genética , Citrus/metabolismo , Sequías , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo , Carbohidratos , Sacarosa/metabolismo , Proteínas de Transporte de Membrana/genética , Monosacáridos/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Genes (Basel) ; 14(10)2023 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-37895266

RESUMEN

Low-temperature germination ability (LTGA) is an important characteristic for spring sowing maize. However, few maize genes related to LTGA were confirmed, and the regulatory mechanism is less clear. Here, maize-inbred lines Ye478 and Q1 with different LTGA were used to perform transcriptome analysis at multiple low-temperature germination stages, and a co-expression network was constructed by weighted gene co-expression network analysis (WGCNA). Data analysis showed that 7964 up- and 5010 down-regulated differentially expressed genes (DEGs) of Ye478 were identified at low-temperature germination stages, while 6060 up- and 2653 down-regulated DEGs of Q1 were identified. Gene ontology (GO) enrichment analysis revealed that ribosome synthesis and hydrogen peroxide metabolism were enhanced and mRNA metabolism was weakened under low-temperature stress for Ye478, while hydrogen peroxide metabolism was enhanced and mRNA metabolism was weakened for Q1. DEGs pairwise comparisons between the two genotypes found that Ye478 performed more ribosome synthesis at low temperatures compared with Q1. WGCNA analysis based on 24 transcriptomes identified 16 co-expressed modules. Of these, the MEbrown module was highly correlated with Ye478 at low-temperature stages and catalase and superoxide dismutase activity, and the MEred, MEgreen, and MEblack modules were highly correlated with Ye478 across low-temperature stages, which revealed a significant association between LTGA and these modules. GO enrichment analysis showed the MEbrown and MEred modules mainly functioned in ribosome synthesis and cell cycle, respectively. In addition, we conducted quantitative trait loci (QTL) analysis based on a doubled haploid (DH) population constructed by Ye478 and Q1 and identified a major QTL explanting 20.6% of phenotype variance on chromosome 1. In this QTL interval, we found three, four, and three hub genes in the MEbrown, MEred, and MEgreen modules, of which two hub genes (Zm00001d031951, Zm00001d031953) related to glutathione metabolism and one hub gene (Zm00001d031617) related to oxidoreductase activity could be the candidate genes for LTGA. These biological functions and candidate genes will be helpful in understanding the regulatory mechanism of LTGA and the directional improvement of maize varieties for LTGA.


Asunto(s)
Sitios de Carácter Cuantitativo , Zea mays , Sitios de Carácter Cuantitativo/genética , Mapeo Cromosómico , Zea mays/genética , Temperatura , Peróxido de Hidrógeno , Perfilación de la Expresión Génica , ARN Mensajero
8.
Cell Mol Immunol ; 20(11): 1313-1327, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37653127

RESUMEN

Aeroallergen sensitization, mainly mediated by lung epithelium and dendritic cells (DCs), is integral to allergic asthma pathogenesis and progression. IL-10 has a dual role in immune responses, as it inhibits myeloid cell activation but promotes B-cell responses and epithelial cell proliferation. Here, we report a proinflammatory function of B-cell-derived IL-10 modulated by Bcl-3 in allergic asthma. Specifically, Bcl-3-/- mice showed elevated IL-10 levels and were found to be highly vulnerable to allergic asthma induced by house dust mites (HDMs). IL-10 had a positive correlation with the levels of the DC chemoattractant CCL-20 in HDM-sensitized mice and in patients with asthma and induced a selective increase in CCL-20 production by mouse lung epithelial cells. Blockade of IL-10 or IL-10 receptors during sensitization dampened both HDM-induced sensitization and asthma development. IL-10 levels peaked 4 h post sensitization with HDM and IL-10 was primarily produced by B cells under Bcl-3-Blimp-1-Bcl-6 regulation. Mice lacking B-cell-derived IL-10 displayed decreased lung epithelial CCL-20 production and diminished DC recruitment to the lungs upon HDM sensitization, thereby demonstrating resistance to HDM-induced asthma. Moreover, responses to HDM stimulation in Bcl-3-/- mice lacking B-cell-derived IL-10 were comparable to those in Bcl-3+/+ mice. The results revealed an unexpected role of B-cell-derived IL-10 in promoting allergic sensitization and demonstrated that Bcl-3 prevents HDM-induced asthma by inhibiting B-cell-derived IL-10 production. Thus, targeting the Bcl-3/IL-10 axis to inhibit allergic sensitization is a promising approach for treating allergic asthma. IL-10 is released rapidly from lung plasma cells under Bcl-3-Blimp-1-Bcl-6 regulation upon house dust mite exposure and amplifies lung epithelial cell (EC)-derived CCL-20 production and subsequent dendritic cell (DC) recruitment to promote allergic sensitization in asthma.


Asunto(s)
Asma , Interleucina-10 , Animales , Humanos , Ratones , Alérgenos , Células Dendríticas , Modelos Animales de Enfermedad , Pulmón/patología , Pyroglyphidae , Células Th2
9.
Sci Adv ; 9(24): eade6624, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37315132

RESUMEN

DNA damage repair (DDR) is a double-edged sword with different roles in cancer susceptibility and drug resistance. Recent studies suggest that DDR inhibitors affect immune surveillance. However, this phenomenon is poorly understood. We report that methyltransferase SMYD2 plays an essential role in nonhomologous end joining repair (NHEJ), driving tumor cells adaptive to radiotherapy. Mechanically, in response to DNA damage, SMYD2 is mobilized onto chromatin and methylates Ku70 at lysine-74, lysine-516, and lysine-539, leading to increased recruitment of Ku70/Ku80/DNA-PKcs complex. Knockdown of SMYD2 or its inhibitor AZ505 results in persistent DNA damage and improper repair, which sequentially leads to accumulation of cytosolic DNA, and activation of cGAS-STING pathway and triggers antitumor immunity via infiltration and activation of cytotoxic CD8+ T cells. Our study reveals an unidentified role of SMYD2 in regulating NHEJ pathway and innate immune responses, suggesting that SMYD2 is a promising therapeutic target for cancer treatment.


Asunto(s)
Linfocitos T CD8-positivos , Reparación del ADN por Unión de Extremidades , N-Metiltransferasa de Histona-Lisina , Autoantígeno Ku , Cromatina , Lisina , Autoantígeno Ku/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo
10.
Food Sci Nutr ; 11(5): 2130-2140, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37181298

RESUMEN

P. ginseng (Panax ginseng C. A. Meyer) is a well-known traditional medicine that has been used for thousands of years to treat diseases. However, "ginseng abuse syndrome" (GAS) often occurs due to an inappropriate use such as high-dose or long-term usage of ginseng; information about what causes GAS and how GAS occurs is still lacking. In this study, the critical components that potentially caused GAS were screened through a step-by-step separation strategy, the pro-inflammatory effects of different extracts on messenger RNA (mRNA) or protein expression levels were evaluated in RAW 264.7 macrophages through quantitative real-time polymerase chain reaction (qRT-PCR) or Western blot, respectively. It was found that high-molecular water-soluble substances (HWSS) significantly increased the expression of cytokines (cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and interleukin 6 (IL-6)) and cyclooxygenase 2 (COX-2) protein; gel filtration chromatography fraction 1 (GFC-F1) further purified from HWSS showed prominent pro-inflammatory effects by increasing the transcription of cytokines (COX-2, iNOS, tumor necrosis factor alpha (TNF-α), and interleukin 1ß (IL-1ß)) as well as the expression of COX-2 and iNOS protein. Moreover, GFC-F1 activated nuclear factor-kappa B (NF-кB) (p65 and inhibitor of nuclear factor-kappa B alpha (IκB-α)) and the p38/MAPK (mitogen-activated protein kinase) signaling pathways. On the other hand, the inhibitor of the NF-κB pathway (pyrrolidine dithiocarbamate (PDTC)) reduced GFC-F1-induced nitric oxide (NO) production, while the inhibitors of the MAPK pathways did not. Taken together, GFC-F1 is the potential composition that caused GAS through the production of inflammatory cytokines by activating the NF-кB pathway.

11.
Expert Rev Anti Infect Ther ; 21(6): 675-684, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37013799

RESUMEN

OBJECTIVES: The purpose of NCDP policy was to reduce the price of drugs. However, it is unclear that a reduction in the price of a single antibiotic will lead to an increase in other alternatives, which is crucial for antibiotic management. The aim of this study was to evaluate the impact of policy on the consumption of policy-related antibiotic. METHODS: Quasi-experimental interrupted time series methods were used to assess the effects of the policy. RESULTS: After the implementation of the policy, the consumption of the winning products increased rapidly, with a significant difference in growth (ß2 = 88.03). For nonwinning products, the level of purchase volume decreased (ß2=-22.83) in the intervention group, and after adding the comparison group, this number fell further in statistical significance (ß2=-114.53). Among all the nonwinning products, the level of purchase volume (ß2=-73.59) and expenditures (ß2=-346.71) of the generic drugs that passed the conformance evaluation decreased significantly after the policy in the difference model. The purchase volume of J01DC, J01DD and total antibiotics significantly increased in control group compared with the intervention. CONCLUSION: The implementation of the volume-based procurement policy promoted the use of winning products and decreased the usage of its alternative watch antibiotics.


Asunto(s)
Costos de los Medicamentos , Políticas , Humanos , China , Antibacterianos , Análisis de Series de Tiempo Interrumpido
12.
Hortic Res ; 10(3): uhad018, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36968187

RESUMEN

Analyzing and comparing the effects of labor-saving cultivation modes on photosynthesis, as well as studying their vertical canopy architecture, can improve the tree structure of high-quality and high-yield citrus and selection of labor-saving cultivation modes. The photosynthesis of 1080 leaves of two labor-saving cultivation modes (wide-row and narrow-plant mode and fenced mode) comparing with the traditional mode were measured, and nitrogen content of all leaves and photosynthetic nitrogen use efficiency (PNUE) were determined. Unmanned aerial vehicle (UAV)-based light detection and ranging (LiDAR) data were used to assess the vertical architecture of three citrus cultivation modes. Results showed that for the wide-row and narrow-plant and traditional modes leaf photosynthetic CO2 assimilation rate, stomatal conductance, and transpiration rate of the upper layer were significantly higher than those of the middle layer, and values of the middle layer were markedly higher than those of the lower layer. In the fenced mode, a significant difference in photosynthetic factors between the upper and middle layers was not observed. A vertical canopy distribution had a more significant effect on PNUE in the traditional mode. Leaves in the fenced mode had distinct photosynthetic advantages and higher PNUE. UAV-based LiDAR data effectively revealed the differences in the vertical canopy architecture of citrus trees by enabling calculating the density and height percentile of the LiDAR point cloud. The point cloud densities of three cultivation modes were significantly different for all LiDAR density slices, especially at higher canopy heights. The labor-saving modes, particularly the fenced mode, had significantly higher height percentile data.

13.
Plant Physiol Biochem ; 196: 739-745, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36827955

RESUMEN

Interveinal chlorosis in old leaves is a common occurrence in citrus orchards in southern China. The present study investigates the 'Langfeng' navel orange (LF, Citrus sinensis) grafted onto a Trifoliate orange (TO, Poncirus trifoliata) rootstock, which exhibits healthy green leaves, and the 'Newhall' navel orange (NHE, C. sinensis) grafted onto TO, which has typical magnesium (Mg) deficiency-induced chlorosis. Chemical analysis of the rhizosphere soil revealed that the pH values were around 3.92 and that both Mg and calcium (Ca) were significantly deficient in the rhizosphere soil of both grafting combinations (LF/TO and NHE/TO). Furthermore, the chlorotic leaves of NHE/TO had significantly lower levels of Mg, Ca, and phosphorus (P), and the green leaves of NHE/TO had significantly lower levels of Mg and Ca compared to the green leaves of the LF/TO. This suggests that Mg deficiency may be the primary cause of chlorosis in NHE/TO. A greenhouse study using the same graft combinations showed that the LF/TO plants had better growth than the NHE/TO, possibly by promoting Mg uptake and/or improving Mg distribution to leaves, thereby increasing carbon dioxide (CO2) assimilation and photosynthesis, optimizing carbohydrate distribution, and increasing plant biomass. This results in a phenotype that is tolerant to Mg deficiency. In conclusion, these findings suggest that the LF navel orange could be utilized in the development of new citrus varieties with improved Mg-use efficiency.


Asunto(s)
Citrus sinensis , Citrus , Citrus sinensis/genética , Magnesio , Suelo , Citrus/genética , Hojas de la Planta/genética
14.
Anal Chem ; 94(51): 18042-18049, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36519576

RESUMEN

Determining actinides in urine is vital for occupational exposure monitoring and radiological emergency response because of the toxicity and radiological dose effects of actinides on human health. Traditional radiochemistry analytical methods used to determine actinide concentrations in urine are time-consuming (sample analysis takes several days) and are hindered by a variety of technical and instrumentation-related obstacles. A high-throughput, fully automated, precise, and accurate in-line method was developed for determining five actinides (241Am, 239Pu, 237Np, 232Th, and 238U) at ng/L levels in urine using extraction chromatography combined with quadrupole inductively coupled plasma mass spectrometry (EC-ICP-MS). In this method, the five actinides were successfully separated with the required sensitivity, peak shape, and resolution using a simplified single Eichrom TRU column with a Dionex ICS-5000 system. The separated actinides were subsequently injected into an in-line PerkinElmer (PE) NexION 300D ICP-MS for quantitative determination. The sample-to-sample run time was 23 min for automatic chemical separation and quantification using only 0.5 mL of urine. The limits of detection (LOD) obtained using this method were 0.015, 0.022, 0.039, 4.5, and 2.4 ng/L for 241Am, 239Pu, 237Np, 232Th, and 238U, respectively. The method routinely had a chemical yield of >84% as well as a linearity (R2) coefficient of ≥0.999 for the calibrators. The method proved to be rapid, reliable, and effective for actinide quantification in urine and therefore is appropriate for radiological emergency response incidents.


Asunto(s)
Elementos de Series Actinoides , Humanos , Espectrometría de Masas/métodos , Elementos de Series Actinoides/orina , Análisis Espectral , Cromatografía , Límite de Detección
15.
BMC Plant Biol ; 22(1): 325, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35790897

RESUMEN

BACKGROUND: Citrus is one of the most important fruit crops in the world, and it is worthy to conduct more research on artificially controlling citrus plant growth and development to adapt to different cultivation patterns and environmental conditions. The plant-specific TEOSINTE BRANCHED1, CYCOLOIDEA, and PROLIFERATING CELL FACTORS (TCP) transcription factors are crucial regulators controlling plant growth and development, as well as responding to abiotic stresses. However, the information about citrus TCP transcription factors remains unclear. RESULTS: In this study, twenty putative TCP genes (CsTCPs) with the TCP domain were explored from Citrus sinensis genome, of which eleven (CsTCP3, - 4, - 5, - 6, - 10, - 11, - 15, - 16, - 18, - 19, - 20), five (CsTCP1, - 2, - 7, - 9, - 13), and four genes (CsTCP8, - 12, - 14, - 17) were unevenly distributed on chromosomes and divided into three subclades. Cis-acting element analysis indicated that most CsTCPs contained many phytohormone- and environment-responsive elements in promoter regions. All of CsTCPs were predominantly expressed in vegetative tissues or organs (stem, leaf, thorn, and bud) instead of reproductive tissues or organs (flower, fruit, and seed). Combined with collinearity analysis, CsTCP3, CsTCP9, and CsTCP13 may take part in leaf development; CsTCP12 and CsTCP14 may function in shoot branching, leaf development, or thorn development; CsTCP15 may participate in the development of stem, leaf, or thorn. In mature leaf, transcript levels of two CsTCPs (CsTCP19, - 20) were significantly increased while transcript levels of eight CsTCPs (CsTCP2, - 5, - 6, - 7, - 8, - 9, - 10, - 13) were significantly decreased by shading; except for two CsTCPs (CsTCP11, - 19), CsTCPs' transcript levels were significantly influenced by low temperature; moreover, transcript levels of two CsTCPs (CsTCP11, - 12) were significantly increased while five CsTCPs' (CsTCP14, - 16, - 18, - 19, - 20) transcript levels were significantly reduced by drought. CONCLUSIONS: This study provides significant clues for research on roles of CsTCPs in regulating citrus plant growth and development, as well as responding to abiotic stresses.


Asunto(s)
Citrus , Factores de Transcripción , Citrus/genética , Genoma de Planta , Proteínas de Plantas/genética , Estrés Fisiológico/genética , Factores de Transcripción/genética
16.
Cancer Lett ; 537: 215640, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35296440

RESUMEN

Dysregulation of the Hippo pathway that promotes cell survival, proliferation and tumorigenesis, relays on the coordinated interactions of YAP with the factors that determine YAP translocation and the related transcriptional programming. Here, we demonstrate that ETV4, a transcriptional factor participating in various protumorigenic processes, enhances YAP-mediated transactivation and hepatocellular carcinoma (HCC) progression. Mechanistically, the enhancement of YAP activities is mediated by the interaction between ETV4 and YAP, which not only increases nuclear YAP accumulation but also directly augments the YAP/TEAD4-mediated transcriptional activation in tumor cells. Functionally, the interplay of ETV4 and YAP promotes growth of liver tumor cells, and activates the genes related to myeloid cell recruitment, including CXCL1 and CXCL5, leading to an enriched presence of myeloid-derived suppressive cells and macrophages but a decreased infiltration of T cells and NK cells in transplanted tumors. More importantly, the correlations between YAP activation, the altered immune cell distribution and ETV4 expression are observed in human HCCs. Therefore, our study reveals a functional interaction between ETV4 and YAP that contributes to HCC progression, and provides mechanistic insights into the regulation of nuclear YAP retention and transactivation.


Asunto(s)
Carcinoma Hepatocelular , Proteínas de Ciclo Celular/metabolismo , Neoplasias Hepáticas , Factores de Transcripción/metabolismo , Carcinogénesis/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , Proteínas Musculares/metabolismo , Proteínas Proto-Oncogénicas c-ets/genética , Factores de Transcripción de Dominio TEA , Factores de Transcripción/genética
18.
Cell Death Differ ; 29(7): 1349-1363, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34999729

RESUMEN

Intestinal intraepithelial lymphocytes (IELs) are distributed along the length of the intestine and are considered the frontline of immune surveillance. The precise molecular mechanisms, especially epigenetic regulation, of their development and function are poorly understood. The trimethylation of histone 3 at lysine 27 (H3K27Me3) is a kind of histone modifications and associated with gene repression. Kdm6b is an epigenetic enzyme responsible for the demethylation of H3K27Me3 and thus promotes gene expression. Here we identified Kdm6b as an important intracellular regulator of small intestinal IELs. Mice genetically deficient for Kdm6b showed greatly reduced numbers of TCRαß+CD8αα+ IELs. In the absence of Kdm6b, TCRαß+CD8αα+ IELs exhibited increased apoptosis, disturbed maturation and a compromised capability to lyse target cells. Both IL-15 and Kdm6b-mediated demethylation of histone 3 at lysine 27 are responsible for the maturation of TCRαß+CD8αα+ IELs through upregulating the expression of Gzmb and Fasl. In addition, Kdm6b also regulates the expression of the gut-homing molecule CCR9 by controlling H3K27Me3 level at its promoter. However, Kdm6b is dispensable for the reactivity of thymic precursors of TCRαß+CD8αα+ IELs (IELPs) to IL-15 and TGF-ß. In conclusion, we showed that Kdm6b plays critical roles in the maturation and cytotoxic function of small intestinal TCRαß+CD8αα+ IELs.


Asunto(s)
Linfocitos Intraepiteliales , Receptores de Antígenos de Linfocitos T alfa-beta , Animales , Antígenos CD8/genética , Antígenos CD8/metabolismo , Epigénesis Genética , Histona Demetilasas/genética , Histonas/metabolismo , Interleucina-15/genética , Interleucina-15/metabolismo , Mucosa Intestinal/metabolismo , Linfocitos Intraepiteliales/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Lisina/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo
19.
Cell Death Differ ; 29(6): 1176-1186, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34853447

RESUMEN

Tumor necrosis factor-α (TNF) is described as a main regulator of cell survival and apoptosis in multiple types of cells, including hepatocytes. Dysregulation in TNF-induced apoptosis is associated with many autoimmune diseases and various liver diseases. Here, we demonstrated a crucial role of Bcl-3, an IκB family member, in regulating TNF-induced hepatic cell death. Specifically, we found that the presence of Bcl-3 promoted TNF-induced cell death in the liver, while Bcl-3 deficiency protected mice against TNF/D-GalN induced hepatoxicity and lethality. Consistently, Bcl-3-depleted hepatic cells exhibited decreased sensitivity to TNF-induced apoptosis when stimulated with TNF/CHX. Mechanistically, the in vitro results showed that Bcl-3 interacted with the deubiquitinase CYLD to synergistically switch the ubiquitination status of RIP1 and facilitate the formation of death-inducing Complex II. This complex further resulted in activation of the caspase cascade to induce apoptosis. By revealing this novel role of Bcl-3 in regulating TNF-induced hepatic cell death, this study provides a potential therapeutic target for liver diseases caused by TNF-related apoptosis.


Asunto(s)
Proteínas del Linfoma 3 de Células B , Proteínas Activadoras de GTPasa , Hepatocitos , Factor de Necrosis Tumoral alfa , Animales , Apoptosis/fisiología , Proteínas del Linfoma 3 de Células B/metabolismo , Caspasas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hígado/citología , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Ubiquitinación
20.
J Radioanal Nucl Chem ; 331(9): 3957-3964, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36744001

RESUMEN

Inductively coupled plasma mass spectrometry (ICP-MS) has proven to be an excellent analytical technique with high sensitivity for detecting low levels of long-lived radionuclides, such as thorium. However, the high-sensitivity technique increases the memory effect of thorium. This study developed a rapid, high-throughput, simple method for measuring thorium in urine using quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS). Replacing the commonly used hazardous hydrofluoric acid with a rinse solution of 0.025 mol/L oxalic acid and 5% (v/v) nitric acid eliminated the memory effect of thorium. 233U was used as internal standard in this study. The limit of detection (LOD) for thorium in this study is 0.77 ng/L, which is comparable to those of reported methods using more sophisticated and expensive sector field inductively coupled plasma mass spectrometry (SF-ICP-MS). This proposed method can determine thorium concentrations in urine in both occupationally exposed workers and populations that live in areas with high background levels of thorium.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...