Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Stem Cell Res Ther ; 15(1): 252, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39135105

RESUMEN

BACKGROUND: Obesity is characterized by excessive fat accumulation, which is related with abnormal pluripotency of mesenchymal stem cells (MSCs). Recently, there is growing evidence that the disorder of maternal vitamin D (VD) intake is a well-known risk factor for long-term adverse health outcomes to their offspring. Otherwise, less is known of its repercussion and underlying mechanisms on the different differentiation potential of MSCs. METHODS: Four-week-old female C57BL/6J mice were fed with different VD reproductive diets throughout the whole pregnancy and lactation. The characteristics of BMSCs from their seven-day male offspring, VDR knockdown establishment of HuMSCs and HuMSCs under the different VD interventions in vitro were confirmed by flow cytometry, RT-PCR, and immunofluorescence. The roles of VD on their mitochondrial dysfunction and differentiation potential were also investigated. Then their remaining weaned male pups were induced by administrating high-fat-diet (HFD) for 16 weeks and normal fat diet was simultaneously as controls. Their lipid accumulation and adipocytes hypertrophy were determined by histological staining and related gene expressions. RESULTS: Herein, it was proved that imbalance of early-life VD intake could significantly aggravate the occurrence of obesity by inducing the adipogenesis through affecting the VD metabolism and related metabolites (P < 0.05). Moreover, abnormally maternal VD intake might be involved on the disorders of differentiation potential to inhibit the maintenance of MSCs stemness through increasing the productions of ROS, which was accompanied by impairing the expression of related genes on the adipo-osteogenic differentiation (P < 0.05). Moreover, it was along with increasing potential of adipogenic differentiation of MSCs as higher ROS in the state of VD deficiency, while excessive maternal VD status could conversely enhance the osteogenic differentiation with slightly lower ROS (P < 0.05). Furthermore, the underlying mechanisms might be involved on the mitochondria dysfunctional, especially the mitophagy, by activating the LC3b, P62 and etc. using in vivo and in vitro studies (P < 0.05). CONCLUSION: These findings demonstrated that imbalance of early-life VD intake could target ROS-mediated crosstalk between mitochondrial dysfunction and differentiation potential of MSCs, which was significantly associated with the later obesity. Obviously, our results could open up an attractive modality for the benefits of suitable VD intake during the pregnancy and lactation.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas , Ratones Endogámicos C57BL , Mitocondrias , Obesidad , Especies Reactivas de Oxígeno , Vitamina D , Animales , Células Madre Mesenquimatosas/metabolismo , Ratones , Obesidad/metabolismo , Obesidad/patología , Diferenciación Celular/efectos de los fármacos , Femenino , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Vitamina D/farmacología , Vitamina D/metabolismo , Masculino , Embarazo , Dieta Alta en Grasa/efectos adversos , Adipogénesis/efectos de los fármacos
2.
IEEE Trans Med Imaging ; PP2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39208042

RESUMEN

Skin lesion is one of the most common diseases, and most categories are highly similar in morphology and appearance. Deep learning models effectively reduce the variability between classes and within classes, and improve diagnostic accuracy. However, the existing multi-modal methods are only limited to the surface information of lesions in skin clinical and dermatoscopic modalities, which hinders the further improvement of skin lesion diagnostic accuracy. This requires us to further study the depth information of lesions in skin ultrasound. In this paper, we propose a novel skin lesion diagnosis network, which combines clinical and ultrasound modalities to fuse the surface and depth information of the lesion to improve diagnostic accuracy. Specifically, we propose an attention-guided learning (AL) module that fuses clinical and ultrasound modalities from both local and global perspectives to enhance feature representation. The AL module consists of two parts, attention-guided local learning (ALL) computes the intra-modality and inter-modality correlations to fuse multi-scale information, which makes the network focus on the local information of each modality, and attention-guided global learning (AGL) fuses global information to further enhance the feature representation. In addition, we propose a feature reconstruction learning (FRL) strategy which encourages the network to extract more discriminative features and corrects the focus of the network to enhance the model's robustness and certainty. We conduct extensive experiments and the results confirm the superiority of our proposed method. Our code is available at: https://github.com/XCL-hub/AGFnet.

3.
Oncol Res ; 32(7): 1221-1229, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948025

RESUMEN

At present, the role of many long non-coding RNAs (lncRNAs) as tumor suppressors in the formation and development of cervical cancer (CC) has been studied. However, lncRNA prostate cancer gene expression marker 1 (PCGEM1), whose high expression not only aggravates ovarian cancer but also can induce tumorigenesis and endometrial cancer progression, has not been studied in CC. The objective of this study was to investigate the expression and the underlying role of PCGEM1 in CC. The relative expression of PCGEM1 in CC cells was detected by real-time PCR. After the suppression of PCGEM1 expression by shRNA, the changes in the proliferation, migration, and invasion capacities were detected via CCK-8 assay, EdU assay, and colony formation assay wound healing assay. Transwell assay and the changes in expressions of epithelial-to-mesenchymal transition (EMT) markers were determined by western blot and immunofluorescence. The interplay among PCGEM1, miR-642a-5p, and kinesin family member 5B (KIF5B) was confirmed by bioinformatics analyses and luciferase reporter assay. Results showed that PCGEM1 expressions were up-regulated within CC cells. Cell viabilities, migration, and invasion were remarkably reduced after the suppression of PCGEM1 expression by shRNA in Hela and SiHa cells. N-cadherin was silenced, but E-cadherin expression was elevated by sh-PCGEM1. Moreover, by sponging miR-642a-5p in CC, PCGEM1 was verified as a competitive endogenous RNA (ceRNA) that modulates KIF5B levels. MiR-642a-5p down-regulation partially rescued sh-PCGEM1's inhibitory effects on cell proliferation, migration, invasion, and EMT process. In conclusion, the PCGEM1/miR-642a-5p/KIF5B signaling axis might be a novel therapeutic target in CC. This study provides a research basis and new direction for targeted therapy of CC.


Asunto(s)
Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Cinesinas , MicroARNs , ARN Largo no Codificante , Neoplasias del Cuello Uterino , Humanos , ARN Largo no Codificante/genética , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo , MicroARNs/genética , Femenino , Cinesinas/genética , Cinesinas/metabolismo , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Movimiento Celular/genética , Línea Celular Tumoral , Células HeLa , Invasividad Neoplásica
4.
Front Oncol ; 14: 1395549, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38898957

RESUMEN

Objective: To investigate the application value of complete laparoscopy and Da Vinci robot esophagogastric anastomosis double muscle flap plasty in radical resection of proximal gastric cancer. Method: A retrospective descriptive study was used. The clinicopathological data of 35 patients undergoing radical operation for proximal gastric cancer admitted to Liaoning Cancer Hospital from January 2020 to December 2023 were collected. Variables evaluated: 1. Transoperative,2. Postoperative, 3. Follow-up. In relation to follow-up, esophageal disease status reflux, anastomosis, nutritional status score, serum hemoglobin, tumor recurrence, and metastasis were investigated. The trans and postoperative variables were obtained from the clinical records and the patients were followed up in outpatient department and by telephone. Result: Among the 35 patients, 17 underwent robotic surgery and 18 underwent laparoscopic surgery. There were 29 males and 6 females. 1) Transoperative: Robotic surgery: The operation time was (305.59 ± 22.07) min, the esophagogastric anastomosis double muscle flap plasty time was (149.76 ± 14.91) min, the average number of lymph nodes cleared was 30, and the average intraoperative blood loss was 30 ml. Laparoscopic surgery: The mean operation time was 305.17 ± 26.92min, the operation time of esophagogastric anastomosis double muscle flap was (194.06 ± 22.52) min, the average number of lymph nodes cleared was 24, and the average intraoperative blood loss was 52.5 ml. 2) Postoperative: Robotic surgery: the average time for patients to have their first postoperative anal emission was 3 days, the average time to first postoperative feeding was 4 days, and the average length of hospitalization after surgery was 8 days. Laparoscopic surgery: the average time for patients to have their first postoperative anal emission was 5 days, the average time to first postoperative feeding was 6 days, the average length of hospitalization after surgery was 10 days. 3) Follow-up: The follow-up time ranged from 1 to 42 months, with a median follow-up time of 24 months. Conclusion: Complete Da Vinci robot and laparoscopic esophagogastric anastomosis double muscle flap plasty for radical resection of proximal gastric cancer can minimize surgical incision, reduce abdominal exposure, accelerate postoperative recovery of patients, and effectively prevent reflux esophagitis and maintain good hemoglobin concentration and nutritional status. The advantages of robotic surgery is less intraoperative bleeding and faster post-surgical recovery, but it is relatively more expensive.

5.
Int J Biol Macromol ; 269(Pt 1): 132081, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705330

RESUMEN

3'-Sialyllactose (3'-SL), one of the abundant and important sialylated human milk oligosaccharides, is an emerging food ingredient used in infant formula milk. We previously developed an efficient route for 3'-SL biosynthesis in metabolically engineered Escherichia coli BL21(DE3). Here, several promising α2,3-sialyltransferases were re-evaluated from the byproduct synthesis perspective. The α2,3-sialyltransferase from Neisseria meningitidis MC58 (NST) with great potential and the least byproducts was selected for subsequent molecular modification. Computer-assisted mutation sites combined with a semi-rational modification were designed and performed. A combination of two mutation sites (P120H/N113D) of NST was finally confirmed as the best one, which significantly improved 3'-SL biosynthesis, with extracellular titers of 24.5 g/L at 5-L fed-batch cultivations. When NST-P120H/N113D was additionally integrated into the genome of host EZAK (E. coli BL21(DE3)ΔlacZΔnanAΔnanT), the final strain generated 32.1 g/L of extracellular 3'-SL in a 5-L fed-batch fermentation. Overall, we underscored the existence of by-products and improved 3'-SL production by engineering N. meningitidis α2,3-sialyltransferase.


Asunto(s)
Escherichia coli , Ingeniería Metabólica , Neisseria meningitidis , Sialiltransferasas , Escherichia coli/genética , Escherichia coli/metabolismo , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Ingeniería Metabólica/métodos , Neisseria meningitidis/genética , Neisseria meningitidis/enzimología , Mutación , Oligosacáridos/biosíntesis , Fermentación
6.
Insects ; 15(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38667421

RESUMEN

Artificial silkworm diets significantly impact farm profitability. Sustainable cocoon production depends on the continuous improvement of feed efficiency to reduce costs and nutrient losses in the feed. This study used metabolomics to explore the differences in silkworm cocoons and hemolymph under two modes of rearing: an artificial diet and a mulberry-leaf diet. Nine metabolites of silkworm cocoons and hemolymph in the mulberry-leaf group were higher than those in the artificial-diet group. Enrichment analysis of the KEGG pathways for these metabolites revealed that they were mainly enriched in the valine, leucine, and isoleucine biosynthesis and degradation pathways. Hence, the artificial silkworm diet was supplemented various concentrations of valine were supplemented to with the aim of examining the impact of valine on their feeding and digestion of the artificial diet. The results indicated that valine addition had no significant effect on feed digestibility in the fifth-instar silkworm. Food intake in the 2% and 4% valine groups was significantly lower than that in the 0% valine group. However, the 2% and 4% valine groups showed significantly improved cocoon-production efficiency, at 11.3% and 25.1% higher, respectively. However, the cocoon-layer-production efficiencies of the 2% and 4% valine groups decreased by 7.7% and 13.9%, respectively. The research confirmed that valine is an effective substance for enhancing the feed efficiency of silkworms.

7.
Stem Cells Int ; 2024: 6693292, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510207

RESUMEN

Objective: Our previous study found that it could significantly increase the expression of IL32 after stimulating the human umbilical cord mesenchymal stem cells (S-HuMSCs). However, its role on the osteogenesis and cranial bone regeneration is still largely unknown. Here, we investigated the possible mechanism of this effect. Material and Methods. A series of experiments, including single-cell sequencing, flow cytometry, quantitative real-time polymerase chain reaction, and western blotting, were carried out to evaluate the characteristic and adipogenic-osteogenic differentiation potential of IL-32 overexpression HuMSCs (IL-32highHuMSCs) through mediating the P38 signaling pathway. Moreover, a rat skull bone defect model was established and treated by directly injecting the IL-32highHuMSCs to conduct its role on the cranial bone regeneration. Results: In total, it found that compared to HuMSCs, IL32 was significantly increased and promoted the osteogenic differentiation (lower expressions of PPARγ, Adiponectin, and C/EBPα, and increased expressions of RUNX2, ALP, BMP2, OPN, SP7, OCN, and DLX5) in the S-HuMSCs (P < 0.05). Meanwhile, the enhanced osteogenic differentiation of HuMSCs was recovered by IL-32 overexpression (IL-32highHuMSCs) through activating the P38 signaling pathway, like as the S-HuMSCs (P < 0.05). However, the osteogenic differentiation potential of IL-32highHuMSCs was significantly reversed by the P38 signaling pathway inhibitor SB203580 (P < 0.05). Additionally, the HuMSCs, S-HuMSCs, and IL-32highHuMSCs all presented adipogenic-osteogenic differentiation potential, with higher levels of CD73, CD90, and CD105, and lower CD14, CD34, and CD45 (P > 0.05). Furthermore, these findings were confirmed by the rat skull bone defect model, in which the cranial bone regeneration was more pronounced in the IL-32highHuMSCs treated group compared to those in the HuMSCs group, with higher expressions of RUNX2, ALP, BMP2, and DLX5 (P < 0.05). Conclusion: We have confirmed that S-HuMSCs can enhance the osteogenesis and cranial bone regeneration through promoting IL-32-mediated P38 signaling pathway, which is proved that IL-32 may be a therapeutic target, or a biomarker for the treatment of cranial bone injuries.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38082863

RESUMEN

12-lead electrocardiogram (ECG) is a widely used method in the diagnosis of cardiovascular disease (CVD). With the increase in the number of CVD patients, the study of accurate automatic diagnosis methods via ECG has become a research hotspot. The use of deep learning-based methods can reduce the influence of human subjectivity and improve the diagnosis accuracy. In this paper, we propose a 12-lead ECG automatic diagnosis method based on channel features and temporal features fusion. Specifically, we design a gated CNN-Transformer network, in which the CNN block is used to extract signal embeddings to reduce data complexity. The dual-branch transformer structure is used to effectively extract channel and temporal features in low-dimensional embeddings, respectively. Finally, the features from the two branches are fused by the gating unit to achieve automatic CVD diagnosis from 12-lead ECG. The proposed end-to-end approach has more competitive performance than other deep learning algorithms, which achieves an overall diagnostic accuracy of 85.3% in the 12-lead ECG dataset of CPSC-2018.


Asunto(s)
Enfermedades Cardiovasculares , Redes Neurales de la Computación , Humanos , Algoritmos , Enfermedades Cardiovasculares/diagnóstico , Electrocardiografía
9.
J Agric Food Chem ; 71(40): 14678-14686, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37773050

RESUMEN

2'-Fucosyllactose (2'-FL), the most typical human milk oligosaccharide, is used as an additive in premium infant formula. Herein, we constructed two highly effective 2'-FL synthesis producers via a de novo GDP-fucose pathway from engineered Escherichia coli MG1655. First, lacZ and wcaJ, two competitive pathway genes, were disrupted to block the invalid consumption of lactose and GDP-fucose, respectively. Next, the lacY gene was strengthened by switching its native promoter to PJ23119. To enhance the supply of endogenous GDP-fucose, the promoters of gene clusters manC-manB and gmd-fcl were strengthened individually or in combination. Subsequently, chromosomal integration of a constitutive PJ23119 promoter-based BKHT expression cassette (PJ23119-BKHT) was performed in the arsB and recA loci. The most productive plasmid-based and plasmid-free strains produced 76.9 and 50.1 g/L 2'-FL by fed-batch cultivation, respectively. Neither of them generated difucosyl lactose nor 3-fucosyllactose as byproducts.

11.
Psychol Rep ; : 332941231191065, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37490869

RESUMEN

High levels of neuroticism are associated with an increased risk of depression. The mechanisms for this association are still unclear. This study investigated loneliness, a pervasive negative human emotion linked to depressive symptoms, as a potential mediator. Data were collected from 739 college students (71.6% females; mean age = 18.47, SD = .87) at two times points through 3 years. Self-report questionnaires were administered to assess neuroticism, loneliness, and depressive symptoms. Cross-sectional analyses of the baseline data suggested that loneliness mediates the association between neuroticism and depressive symptoms. Prospective analyses with two-wave data further prove that baseline neuroticism can predict the changes in depressive symptoms, and changes in loneliness sequentially mediated this association. These findings suggest a possibility of developing interventions for loneliness to interrupt the association between neuroticism and poorer mental health outcomes among college students.

12.
J Agric Food Chem ; 71(12): 4915-4923, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36876899

RESUMEN

2'-Fucosyllactose (2'-FL) is a kind of fucosylated human milk oligosaccharide (HMO), representing the most abundant oligosaccharide in breast milk. We conducted systematic studies on three canonical α1,2-fucosyltransferases (WbgL, FucT2, and WcfB) to quantify the byproducts in a lacZ- and wcaJ-deleted Escherichia coli BL21(DE3) basic host strain. Further, we screened a highly active α1,2-fucosyltransferase from Helicobacter sp. 11S02629-2 (BKHT), which exhibits high in vivo 2'-FL productivity without the formation of byproducts difucosyl lactose (DFL) and 3-FL. The maximum 2'-FL titer and yield reached 11.13 g/L and 0.98 mol/mol of lactose, respectively, in shake-flask cultivation, both approaching the theoretical maximum value. In a 5 L fed-batch cultivation, the maximum 2'-FL titer reached 94.7 g/L extracellularly with a yield of 0.98 mol of 2'-FL/mol of lactose and productivity of 1.14 g L-1 h-1. Our reported 2'-FL yield is the highest from lactose reported to date.


Asunto(s)
Escherichia coli , Fucosiltransferasas , Humanos , Escherichia coli/genética , Fucosiltransferasas/genética , Lactosa , Trisacáridos , Oligosacáridos , Leche Humana
13.
Bioresour Technol ; 374: 128818, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36868425

RESUMEN

Human milk oligosaccharides are complex, indigestible oligosaccharides that provide ideal nutrition for infant development. Here, 2'-fucosyllactose was efficiently produced in Escherichia coli by using a biosynthetic pathway. For this, both lacZ and wcaJ (encoding ß-galactosidase and UDP-glucose lipid carrier transferase, respectively) were deleted to enhance the 2'-fucosyllactose biosynthesis. To further enhance 2'-fucosyllactose production, SAMT from Azospirillum lipoferum was inserted into the chromosome of the engineered strain, and the native promoter was replaced with a strong constitutive promoter (PJ23119). The titer of 2'-fucosyllactose was increased to 8.03 g/L by introducing the regulators rcsA and rcsB into the recombinant strains. Compared to wbgL-based strains, only 2'-fucosyllactose was produced in SAMT-based strains without other by-products. Finally, the highest titer of 2'-fucosyllactose reached 112.56 g/L in a 5 L bioreactor by fed-batch cultivation, with a productivity of 1.10 g/L/h and a yield of 0.98 mol/mol lactose, indicating a strong potential in industrial production.


Asunto(s)
Azospirillum lipoferum , Escherichia coli , Niño , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Azospirillum lipoferum/genética , Azospirillum lipoferum/metabolismo , Trisacáridos/genética , Trisacáridos/metabolismo , Oligosacáridos/metabolismo , Ingeniería Metabólica
14.
J Obstet Gynaecol ; 43(1): 2171283, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36744815

RESUMEN

Cervical cancer (CC) is a common malignant neoplasm in gynecology. There is increasing evidence to suggest that microRNAs (miRNAs) act as crucial regulators of CC. However, whether miR-10a-5p plays a role in CC is under investigation. The aim of this stuy was to assess the miR-10a-5p expression pattern in the development of CC and investigate its downstream target. MiR-10a-5p inhibition decreased CC cell proliferation and impaired CC cell invasion and migration but enhanced apoptosis. UBE2I was a direct target of miR-10a-5p. QRT-PCR results showed a down-regulation of UBE2I in CC cells, opposing miR-10a-5p. Besides, overexpression of miR-10a-5p down-regulated UBE2I. Functional rescue experiments further indicated the miR-10a-5p-UBE2I axis was linked to CC cell growth, apoptosis and metastasis. MiR-10a-5p upregulation promotes cervical cancer development by inhibiting UBE2I. These results also predict that miR-10a-5p may be a potential target for the clinical treatment of CC.IMPACT STATEMENTWhat is already known on this subject? As a widely researched cancer-related miRNA, the overexpression of miR-10a-5p has been verified in various cancers. It has been described in a meta-analysis report that there were 42 miRNAs up-regulated and 21 miRNAs down-regulated in different stages of cervical cancer tissue versus healthy tissue.What do the results of this study add? We verified that miR-10a-5p initiates and promotes tumor cell development by decreasing UBE2I abundance. This miR-10a-5p-mediated post-transcriptional regulation of UBE2I is involved in the tumorigenesis, invasion and migration of human cervical cancer.What are the implications of these findings for clinical practice and/or further research? These findings provide mechanistic insights into how miR-10a-5p regulates cervical cancer hyper-proliferation and metastasis, as well as a new target for clinical treatment. Nevertheless, whether miR-10a-5p/UBE2I axis can be regulated by non-invasive methods need further exploration, which will be the focus of our future research.


Asunto(s)
MicroARNs , Enzimas Ubiquitina-Conjugadoras , Neoplasias del Cuello Uterino , Femenino , Humanos , Línea Celular Tumoral , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Transducción de Señal/genética , Enzimas Ubiquitina-Conjugadoras/genética , Regulación hacia Arriba , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología
15.
Hum Cell ; 36(3): 997-1010, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36841925

RESUMEN

MSCs have been demonstrated to have a great benefit for type 1 diabetes mellitus (T1DM) due to their strong immunosuppressive and regenerative capacity. However, the comprehensive mechanism is still unclear. Our previous study indicated that transforming growth factor beta induced (TGFBI) is highly expressed in human umbilical cord-derived mesenchymal stem or stromal cells (hUC-MSCs), which are also implicated in T1DM. In this study, we found that infusion of TGFBI knockdown hUC-MSCs displayed impaired therapeutic effects in T1DM mice and decreased immunosuppressive capability. TGFBI knockdown hUC-MSCs could increase the proportion of T-cell infiltration while increasing the expression of IFN-gamma and interleukin-17A in the spleen. In addition, we also revealed that hUC-MSC-derived TGFBI could repress activated T-cell proliferation by interfering with G1/S checkpoint CyclinD2 expression. Our results demonstrate that TGFBI plays a critical role in MSC immunologic regulation. TGFBI could be a new immunoregulatory molecule controlling MSC function for new treatments of T1DM. Schematic Representation of the Immunosuppression capacity of hUC-MSC by TGFBI.


Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Animales , Ratones , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/metabolismo , Estreptozocina/metabolismo , Estreptozocina/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proliferación Celular/genética , Cordón Umbilical
16.
J Agric Food Chem ; 71(5): 2464-2471, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36700831

RESUMEN

l-Fucose is a natural deoxy hexose found in a variety of organisms. It possesses many physiological effects and has potential applications in pharmaceutical, cosmetic, and food industries. Microbial synthesis via metabolic engineering attracts increasing attention for efficient production of important chemicals. Previously, we reported the construction of a metabolically engineered Escherichia coli strain with high 2'-fucosyllactose productivity. Herein, we further introduced Bifidobacterium bifidum α-l-fucosidase via both plasmid expression and genomic integration and blocked the l-fucose assimilation pathway by deleting fucI, fucK, and rhaA. The highest l-fucose titers reached 6.31 and 51.05 g/L in shake-flask and fed-batch cultivation, respectively. l-Fucose synthesis was little affected by lactose added, and there was almost no 2'-fucosyllactose residue throughout the cultivation processes. The l-fucose productivity reached 0.76 g/L/h, indicating significant potential for large-scale industrial applications.


Asunto(s)
Escherichia coli , Trisacáridos , Escherichia coli/genética , Trisacáridos/metabolismo , Fucosa/metabolismo , Ingeniería Metabólica , Fermentación
17.
Biotechnol Bioeng ; 120(2): 524-535, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36326175

RESUMEN

As one of the most abundant components in human milk oligosaccharides, 2'-fucosyllactose (2'-FL) possesses versatile beneficial health effects. Although most studies focused on overexpressing or fine-tuning the expression of pathway enzymes and achieved a striking increase of 2'-FL production, directly facilitating the metabolic flux toward the key intermediate GDP-l-fucose seems to be ignored. Here, multienzyme complexes consisting of sequential pathway enzymes were constructed by using specific peptide interaction motifs in recombinant Escherichia coli to achieve a higher titer of 2'-FL. Specifically, we first fine-tuned the expression level of pathway enzymes and balanced the metabolic flux toward 2'-FL synthesis. Then, two key enzymes (GDP-mannose 4,6-dehydratase and GDP- l-fucose synthase) were self-assembled into enzyme complexes in vivo via a short peptide interaction pair RIAD-RIDD (RI anchoring disruptor-RI dimer D/D domains), resulting in noticeable improvement of 2'-FL production. Next, to further strengthen the metabolic flux toward 2'-FL, three pathway enzymes were further aggregated into multienzyme assemblies by using another orthogonal protein interaction motif (Spycatcher-SpyTag or PDZ-PDZlig). Intracellular multienzyme assemblies remarkably enlarged the flux toward 2'-FL biosynthesis and showed a 2.1-fold increase of 2'-FL production compared with a strain expressing free-floating and unassembled enzymes. The optimally engineered strain EZJ23 accumulated 4.8 g/L 2'-FL in shake flask fermentation and was capable of producing 25.1 g/L 2'-FL by fed-batch cultivation. This work provides novel approaches for further improvement and large-scale production of 2'-FL and demonstrates the effectiveness of spatial assembly of pathway enzymes to improve the production of valuable products in the engineered host strain.


Asunto(s)
Escherichia coli , Fucosa , Trisacáridos , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Fucosa/metabolismo , Guanosina Difosfato Fucosa/metabolismo , Ingeniería Metabólica/métodos , Complejos Multienzimáticos/metabolismo , Péptidos/metabolismo , Trisacáridos/biosíntesis
18.
Nutrition ; 105: 111837, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36257082

RESUMEN

OBJECTIVES: The colonization of gut microbiota during early life may play a critical role in the progression of metabolic syndrome in adulthood. Targeting gut-based genes in the barrier function, inflammation, and lipid transportation are potential therapies for obesity. Therefore, this study focused on whether maternal deficient vitamin D (VD) intake could aggravate the dysbiosis of gut microbiota by affecting the expressions of these genes in the ileum and colon of obese male offspring mice. METHODS: Four-week-old female C57 BL/6 J mice were fed normal (VD-C) or VD-deficient (VD-D) reproductive diets throughout pregnancy and lactation (n = 15/group). Weaning male pups (n = 10/group) were fed either a high-fat (HFD; VD-C-HFD, VD-D-HFD) or normal-fat diet (control) for 16 wk. All biologic samples were obtained after the mice were anesthetized by cervical dislocation. Subsequently, the compositions of the gut microbiota in cecal contents were analyzed using 16 S ribosomal RNA sequencing. Messenger RNA expression in the ileum and colon was determined using real-time reverse transcription-polymerase chain reaction. The distributions of ZO-1 and Claudin-1 were determined using immunohistochemistry testing. RESULTS: Maternal deficient VD intake significantly aggravated the dysbiosis of gut microbiota persisting into adulthood from phylum to genus levels in the cecal contents among obese male offspring mice. This aggravation led to significantly depleted Bacteroidetes and Verrucomicrobia (Akkermansia, Alliprevotella, and Bacteroides), with higher relative abundance of Firmicutes (Lactobacillus, Lachnoclostridium, Romboutsia, and Ruminiclostridium_9) and Firmicutes/Bacteroidetes. The gene expressions of proinflammatory cytokines (Ccl2, Ccl4 and interleukin-1ß) and lipid transportation molecules (Ffar3, Fabp4, and Fabp1) were higher, and the levels of intestinal barrier function (Occludin, ZO-1, and Claudin-1) were lower in the VD-D-HFD group than those in the VD-C-HFD group. Furthermore, there were significant correlations between the dysbiosis of intestinal microbials and expressions of genes related to barrier function, inflammation, and lipid transportation in the ileum and/or colon. CONCLUSIONS: Maternal VD deficiency during pregnancy and lactation could aggravate the dysbiosis of gut microbiota to affect the progression of obesity among male offspring, which might be regulated by genes associated with barrier function, inflammation, and lipid transportation. So early life appropriate VD intake could play a significant role in preventing later obesity.


Asunto(s)
Microbioma Gastrointestinal , Deficiencia de Vitamina D , Embarazo , Masculino , Femenino , Ratones , Animales , Disbiosis/etiología , Ratones Obesos , Dieta Alta en Grasa/efectos adversos , Claudina-1 , Obesidad/metabolismo , Inflamación , Ratones Endogámicos C57BL , Lípidos
19.
World J Stem Cells ; 14(10): 756-776, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36337156

RESUMEN

BACKGROUND: The effects of inappropriate dietary calcium intake in early life on later obesity have not been fully elucidated. AIM: To raise the mechanism of maternal calcium intake on the multi-differentiation potential of mesenchymal stem cells among their male offspring. METHODS: Four-week-old female C57BL/6N mice were fed by deficient, low, normal and excessive calcium reproductive diets throughout pregnancy and lactation. Bone MSCs (BMSCs) were obtained from 7-day-old male offspring to measure the adipogenic differentiation potential by the Wnt/ß-catenin signaling pathway. The other weaning male pups were fed a high-fat diet for 16 wk, along with normal-fat diet as the control. Then the serum was collected for the measurement of biochemical indicators. Meanwhile, the adipose tissues were excised to analyze the adipocyte sizes and inflammatory infiltration. And the target gene expressions on the adipogenic differentiation and Wnt/ß-catenin signaling pathway in the adipose tissues and BMSCs were determined by real-time reverse transcription polymerase chain reaction. RESULTS: Compared with the control group, maternal deficient, low and excessive calcium intake during pregnancy and lactation aggravated dietary-induced obesity, with larger adipocytes, more serious inflammatory infiltration and higher serum metabolism indicators by interfering with higher expressions of adipogenic differentiation (PPARγ, C/EBPα, Fabp4, LPL, Adiponectin, Resistin and/or Leptin) among their male offspring (P < 0.05). And there were significantly different expression of similar specific genes in the BMSCs to successfully polarize adipogenic differentiation and suppress osteogenic differentiation in vivo and in vitro, respectively (P < 0.05). Meanwhile, it was accompanied by more significant disorders on the expressions of Wnt/ß-catenin signaling pathway both in BMSCs and adulthood adipose tissues among the offspring from maternal inappropriate dietary calcium intake groups. CONCLUSION: Early-life abnormal dietary calcium intake might program the adipogenic differentiation potential of BMSCs from male offspring, with significant expressions on the Wnt/ß-catenin signaling pathway to aggravate high-fat-diet-induced obesity in adulthood.

20.
Stem Cells Int ; 2022: 1052166, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277038

RESUMEN

Mesenchymal stem cells (MSCs) have already demonstrated definitive evidence of their clinical benefits in acute graft-versus-host disease (aGvHD) and other inflammatory diseases. However, the comprehensive mechanism of MSCs' immunomodulation properties has not been elucidated. To reveal their potential immunosuppressive molecules, we used RNA sequencing to analyze gene expression in different tissue-derived MSCs, including human bone marrow, umbilical cord, amniotic membrane, and placenta, and found that chitinase-3-like protein 1 (Chi3l1) was highly expressed in human umbilical cord mesenchymal stem cells (hUC-MSCs). We found that hUC-MSCs treated with interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) exhibited increased expression of Chi3l1 and concurrently repressed T-helper 17 cell (Th17) differentiation through inhibition of signal transducer and activator of transcription 3 (STAT3) activation. Furthermore, Chi3l1 knockdown hUC-MSCs exhibited impaired therapeutic efficacy in aGvHD mice with an increased inflammatory response by promoting Th17 cell differentiation, including an increase in IL-17A in the spleen, intestine, and serum. Collectively, these results reveal a new immunosuppressive molecule, Chi3l1, in hUC-MSCs in the treatment of aGvHD that regulates Th17 differentiation and inhibits STAT3 activation. These novel insights into the mechanisms of hUC-MSC immunoregulation may lead to the consistent production of hUC-MSCs with strong immunosuppressive functions and thus improved clinical utility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...