Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(25): 27321-27328, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38947815

RESUMEN

Tripterygium glycoside tablets (TGTs) are preparations extracted and purified from Tripterygium wilfordii Hook. F and are extensively utilized in the treatment of autoimmune diseases, such as rheumatoid arthritis (RA). However, variations in production processes among manufacturers can lead to challenges in quality control and clinical utilization of TGTs. A band-selective 2D 1H-13C HSQC quantification method was applied for the determination of 13 active ingredients in TGTs. This method was validated following the guidelines of USP-NF 2022. The results demonstrated that the quantitative method exhibited excellent signal resolution, as well as sufficient accuracy, sensitivity, and stability. In addition, the 1H NMR spectra of TGTs from three manufacturers underwent analysis using principal component analysis and orthogonal partial least-squares discriminant analysis. The results revealed significant differences among the TGTs from the three manufacturers, with manufacturer 2 and manufacturer 3 demonstrating superior product consistency compared to manufacturer 1. A quality evaluation system for TGTs was developed based on band-selective 2D 1H-13C HSQC and 1H NMR, encompassing both quality markers and fingerprinting. This system offers reliable approaches and insights for enhancing the quality control of natural products.

2.
J Nanobiotechnology ; 22(1): 196, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644492

RESUMEN

Tumors desmoplastic microenvironments are characterized by abundant stromal cells and extracellular matrix (ECM) deposition. Cancer-associated fibroblasts (CAFs), as the most abundant of all stromal cells, play significant role in mediating microenvironments, which not only remodel ECM to establish unique pathological barriers to hinder drug delivery in desmoplastic tumors, but also talk with immune cells and cancer cells to promote immunosuppression and cancer stem cells-mediated drug resistance. Thus, CAFs mediated desmoplastic microenvironments will be emerging as promising strategy to treat desmoplastic tumors. However, due to the complexity of microenvironments and the heterogeneity of CAFs in such tumors, an effective deliver system should be fully considered when designing the strategy of targeting CAFs mediated microenvironments. Engineered exosomes own powerful intercellular communication, cargoes delivery, penetration and targeted property of desired sites, which endow them with powerful theranostic potential in desmoplastic tumors. Here, we illustrate the significance of CAFs in tumors desmoplastic microenvironments and the theranostic potential of engineered exosomes targeting CAFs mediated desmoplastic microenvironments in next generation personalized nano-drugs development.


Asunto(s)
Fibroblastos Asociados al Cáncer , Exosomas , Microambiente Tumoral , Fibroblastos Asociados al Cáncer/metabolismo , Exosomas/metabolismo , Microambiente Tumoral/efectos de los fármacos , Humanos , Animales , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Sistemas de Liberación de Medicamentos/métodos , Matriz Extracelular/metabolismo , Antineoplásicos/farmacología
3.
Int J Nanomedicine ; 19: 743-758, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38283199

RESUMEN

Background: The morbidity and mortality of triple-negative breast cancer (TNBC) are still high, causing a heavy medical burden. CCL5, as a chemokine, can be involved in altering the composition of the tumor microenvironment (TME) as well as the immunosuppressive degree, and has become a very promising target for the treatment of TNBC. Dysregulation of microRNAs (miRNAs) in tumor tissues is closely related to tumor progression, and its utilization can be used to achieve therapeutic purposes. Engineered exosomes can avoid the shortcomings of miRNAs and also enhance their targeting and anti-tumor effects through engineering. Therefore, we aimed to create a cRGD-modified exosome for targeted delivery of miR-588 and to investigate its effect in remodeling immunosuppressive TME by anchoring CCL5 in TNBC. Methods: In this study, we loaded miR-588 into exosomes using electroporation and modified it with cRGD using post insertion to obtain cRGD-Exos/miR-588. Transmission electron microscopy (TEM), nanoparticle tracking assay technique (NTA), Western Blots, qPCR, and flow cytometry were applied for its characterization. CCK-8, qPCR and enzyme-linked immunosorbent assay (ELISA), in vivo fluorescence imaging system, immunohistochemistry and H&E staining were used to explore the efficacy as well as the mechanism at the cellular level as well as in subcutaneous graft-tumor nude mouse model. Results: The cRGD-Exos/miR-588 was successfully constructed and had strong TNBC tumor targeting in vitro and in vivo. Meanwhile, it has significant efficacy on TME components affected by CCL5 and the degree of immunosuppression, which can effectively control TNBC with good safety. Conclusion: In this experiment, cRGD-Exos/miR-588 was prepared to remodel immunosuppressive TME by anchoring CCL5, which is affected by the vicious cycle of immune escape. Overall, cRGD-Exos/miR-588 explored the feasibility of targeting TME for the TNBC treatment, and provided a competitive delivery system for the engineered exosomes to deliver miRNAs for antitumor therapy drug.


Asunto(s)
Antineoplásicos , Exosomas , MicroARNs , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/patología , MicroARNs/genética , Antineoplásicos/farmacología , Inmunosupresores/farmacología , Línea Celular Tumoral , Microambiente Tumoral
4.
Int J Biol Sci ; 19(14): 4493-4510, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781031

RESUMEN

Atherosclerosis as the leading cause of the cardiovascular disease is closely related to cholesterol deposition within subendothelial areas of the arteries. Significantly, early atherosclerosis intervention is the critical phase for its reversal. As atherosclerosis progresses, early foam cells formation may evolve into fibrous plaques and atheromatous plaque, ulteriorly rupture of atheromatous plaque increases risks of myocardial infarction and ischemic stroke, resulting in high morbidity and mortality worldwide. Notably, amphiphilic apolipoproteins (Apos) can concomitantly combine with lipids to form soluble lipoproteins that have been demonstrated to associate with atherosclerosis. Apos act as crucial communicators of lipoproteins, which not only can mediate lipids metabolism, but also can involve in pro-atherogenic and anti-atherogenic processes of atherosclerosis via affecting subendothelial retention and aggregation of low-density lipoprotein (LDL), oxidative modification of LDL, foam cells formation and reverse cholesterol transport (RCT) in macrophage cells. Correspondingly, Apos can be used as endogenous and/or exogenous targeting agents to effectively attenuate the development of atherosclerosis. The article reviews the classification, structure, and relationship between Apos and lipids, how Apos serve as communicators of lipoproteins to participate in the pathogenesis progression of early atherosclerosis, as well as how Apos as the meaningful targeting mass is used in early atherosclerosis treatment.


Asunto(s)
Apolipoproteínas , Aterosclerosis , Placa Aterosclerótica , Humanos , Apolipoproteínas/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Aterosclerosis/patología , Colesterol/metabolismo , Lipoproteínas/metabolismo , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/metabolismo
5.
ACS Appl Mater Interfaces ; 15(29): 34360-34377, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37432741

RESUMEN

Having no specific therapy for triple-negative breast cancer (TNBC), this subtype has the lowest survival rate and highest metastatic risk of breast cancer since the tumor inflammatory microenvironment mainly accounts for heterogeneity-induced insensitivity to chemotherapy and epithelial-mesenchymal transition (EMT). This study reports hyaluronic acid (HA)-modified liposomes loaded with cisplatin (CDDP) and hesperetin (Hes) (CDDP-HA-Lip/Hes) for active targeting to relieve systematic toxicity and effective anti-tumor/anti-metastasis ability of TNBC. Our results revealed that HA modification promoted the cellular uptake of the synthesized CDDP-HA-Lip/Hes nanoparticles in MDA-MB-231 cells and accumulation in tumor sites in vivo, indicating deeper tumor penetration. Importantly, CDDP-HA-Lip/Hes inhibited the PI3K/Akt/mTOR pathway to alleviate the inflammation in the tumor and with a crosstalk to suppress the process of the EMT, increasing the chemosensitivity and inhibiting tumor metastasis. Meanwhile, CDDP-HA-Lip/Hes could significantly inhibit the aggression and metastasis of TNBC with less side effects on normal tissues. Overall, this study provides a tumor-targeting drug delivery system with great potential for treating TNBC and its lung metastasis robustly.


Asunto(s)
Cisplatino , Neoplasias de la Mama Triple Negativas , Humanos , Cisplatino/uso terapéutico , Liposomas , Neoplasias de la Mama Triple Negativas/metabolismo , Ácido Hialurónico/uso terapéutico , Fosfatidilinositol 3-Quinasas , Línea Celular Tumoral , Agresión , Microambiente Tumoral
6.
Anal Chim Acta ; 1274: 341568, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37455080

RESUMEN

Sesquiterpene pyridine alkaloids (SPAs) are bioactive analogues derived from the genus Tripterygium and have anti-inflammatory and anti-rheumatic properties. Attributed to the similar sesquiterpene structures, the total SPAs showed severe peak overlap in 1D NMR and HPLC, leading to difficulties in identification and quantification. Interestingly, the application of band-selective HSQC NMR that specifically excited the region corresponding to the H-3 of SPAs prompted a signal separation of the total SPAs. Based on the high resolution, 23 SPAs were identified from the band-selective HSQC spectrum. The coupling constants (JCH, JHH) and relaxation times (T1, T2) of SPAs were measured, and it was found that they caused less than 1% attenuation of the HSQC signals, so the HSQC signals of SPAs had almost uniform responses. The concentrations of 23 SPAs were determined by standard curve method, using wilforgine as the calibration. In addition, we extended the pulse length-based concentration determination (PULCON) as a more efficient external standard method to the band-selective HSQC spectrum, and the results showed that the concentrations of alkaloids determined by PULCON were consistent with those measured by standard curve method. The developed quantification approach was validated according to the <761> of United States Pharmacopoeia (USP), demonstrating that the established band-selective HSQC approach is reliable for the rapid quantification of analogues in botanical extracts.


Asunto(s)
Alcaloides , Sesquiterpenos , Tripterygium/química , Alcaloides/química , Espectroscopía de Resonancia Magnética , Sesquiterpenos/química , Piridinas/química
7.
Breast Cancer Res ; 25(1): 3, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635685

RESUMEN

The chemotherapy of triple-negative breast cancer based on doxorubicin (DOX) regimens suffers from great challenges on toxicity and autophagy raised off-target. In this study, a conjugate methotrexate-polyethylene glycol (shorten as MTX-PEG)-modified CG/DMMA polymeric micelles were prepared to endue DOX tumor selectivity and synergistic autophagic flux interference to reduce systematic toxicity and to improve anti-tumor capacity. The micelles could effectively promote the accumulation of autophagosomes in tumor cells and interfere with the degradation process of autophagic flux, collectively inducing autophagic death of tumor cells. In vivo and in vitro experiments showed that the micelles could exert improved anti-tumor effect and specificity, as well as reduced accumulation and damage of chemotherapeutic drugs in normal organs. The potential mechanism of synergistic autophagic death exerted by the synthesized micelles in MDA-MB-231 cells has been performed by autophagic flux-related pathway.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Micelas , Metotrexato , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Doxorrubicina , Polímeros
8.
J Control Release ; 353: 327-336, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36464063

RESUMEN

Tumor-derived exosomes (TDEs) are the particular communicator and messenger between tumor cells and other cells containing cancer-associated genetic materials and proteins. And TDEs who are also one of the important components consisting of the tumor microenvironment (TME) can reshape and interact with TME to promote tumor development and metastasis. Moreover, due to their long-distance transmission by body fluids, TDEs can facilitate the formation of pre-metastatic niche to support tumor colonization. We discuss the main characteristics and mechanism of TDE-mediated tumor metastasis by reshaping TME and pre-metastatic niche as well as the potential of TDEs for diagnosing tumor and predicting future metastatic development.


Asunto(s)
Exosomas , Neoplasias , Humanos , Exosomas/metabolismo , Microambiente Tumoral , Neoplasias/metabolismo , Metástasis de la Neoplasia
9.
Anal Sci ; 38(9): 1153-1161, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35804222

RESUMEN

The development of ultrasensitive in situ detection techniques for monitoring hypobromous acid (HBrO) levels in the biological systems is of great significance to reveal its complex pathological and physiological effects. A simple mitochondria-targetable hydrazine-based near-infrared (NIR) fluorescent probe (Mito-NIR) for detecting HBrO in the mitochondria of live cells is presented in this paper. Probe Mito-NIR displays the ultrafast (< 5 s) response for HBrO. It can detect HBrO with high sensitivity. Additionally, it shows high selectivity towards HBrO over other biologically important substances. Finally, it can monitor the changes of endogenous/exogenous HBrO levels in the mitochondria of live cells. A simple mitochondria-targetable NIR fluorescent probe with picomolar sensitivity for HBrO was developed to specifically track mitochondrial HBrO.


Asunto(s)
Bromatos , Colorantes Fluorescentes , Mitocondrias
10.
Biomed Pharmacother ; 150: 113074, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35658215

RESUMEN

Methotrexate (MTX) has been used for the treatment of rheumatoid arthritis (RA) for about forty years and to date MTX remains the part of global standard of treatment for RA. The efficacy of MTX in RA is the result of multiple mechanisms of action. In order to summarize the possible pharmacological mechanisms of MTX in the treatment of RA, this review will elaborate on folate antagonism, promotion of adenosine accumulation, regulation of inflammatory signaling pathways, bone protection and maintenance of immune system function.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Antirreumáticos/farmacología , Antirreumáticos/uso terapéutico , Artritis Reumatoide/metabolismo , Humanos , Metotrexato/farmacología , Metotrexato/uso terapéutico
11.
Front Pharmacol ; 13: 849101, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712709

RESUMEN

Rheumatoid arthritis (RA) is a chronic inflammatory disease, characterized by synovial inflammation in multiple joints. Triptolide (TP) is a disease-modifying anti-rheumatic drug (DMARD) highly effective in patients with RA and has anti-inflammatory properties. However, its clinical application has been limited owing to practical disadvantages. In the present study, hyaluronic acid (HA) hydrogel-loaded RGD-attached gold nanoparticles (AuNPs) containing TP were synthesized to alleviate the toxicity and increase therapeutic specificity. The hydrogels can be applied for targeted photothermal-chemo treatment and in vivo imaging of RA. Hydrogel systems with tyramine-modified HA (TA-HA) conjugates have been applied to artificial tissue models as surrogates of cartilage to investigate drug transport and release properties. After degradation of HA chains, heat was locally generated at the inflammation region site due to near-infrared resonance (NIR) irradiation of AuNPs, and TP was released from nanoparticles, delivering heat and drug to the inflamed joints simultaneously. RA can be penetrated with NIR light. Intraarticular administration of the hydrogels containing low dosage of TP with NIR irradiation improved the inflamed conditions in mice with collagen-induced arthritis (CIA). Additionally, in vitro experiments were applied to deeply verify the antirheumatic mechanisms of TP-PLGA-Au@RGD/HA hydrogels. TP-PLGA-Au@RGD/HA hydrogel treatment significantly reduced the migratory and invasive capacities of RA fibroblast-like synoviocytes (RA-FLS) in vitro, through the decrease of phosphorylation of mTOR and its substrates, p70S6K1, thus inhibiting the mTOR pathway.

12.
J Biol Chem ; 298(4): 101756, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35202652

RESUMEN

Methotrexate (MTX) is the first-line treatment for rheumatoid arthritis (RA). However, after long-term treatment, some patients develop resistance. P-glycoprotein (P-gp), as an indispensable drug transporter, is essential for mediating this MTX resistance. In addition, nobiletin (NOB), a naturally occurring polymethoxylated flavonoid, has also been shown to reverse P-gp-mediated MTX resistance in RA groups; however, the precise role of NOB in this process is still unclear. Here, we administered MTX and NOB alone or in combination to collagen II-induced arthritic (CIA) mice and evaluated disease severity using the arthritis index, synovial histopathological changes, immunohistochemistry, and P-gp expression. In addition, we used conventional RNA-seq to identify targets and possible pathways through which NOB reverses MTX-induced drug resistance. We found that NOB in combination with MTX could enhance its performance in synovial tissue and decrease P-gp expression in CIA mice compared to MTX treatment alone. In vitro, in MTX-resistant fibroblast-like synoviocytes from CIA cells (CIA-FLS/MTX), we show that NOB treatment downregulated the PI3K/AKT/HIF-1α pathway, thereby reducing the synthesis of the P-gp protein. In addition, NOB significantly inhibited glycolysis and metabolic activity of CIA-FLS/MTX cells, which could reduce the production of ATP and block P-gp, ultimately decreasing the efflux of MTX and maintaining its anti-RA effects. In conclusion, this study shows that NOB overcomes MTX resistance in CIA-FLS/MTX cells through the PI3K/AKT/HIF-1α pathway, simultaneously influencing metabolic processes and inhibiting P-gp-induced drug efflux.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Resistencia a Medicamentos , Flavonas , Biosíntesis de Proteínas , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Resistencia a Medicamentos/efectos de los fármacos , Fibroblastos/metabolismo , Flavonas/farmacología , Flavonas/uso terapéutico , Expresión Génica/efectos de los fármacos , Humanos , Metotrexato/farmacología , Ratones , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Inhibidores de la Síntesis de la Proteína/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo
13.
Cell Biol Toxicol ; 38(6): 945-961, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35040016

RESUMEN

Covalent binding of reactive metabolites formed by drug metabolic activation with biological macromolecules is considered to be an important mechanism of drug metabolic toxicity. Recent studies indicate that the endoplasmic reticulum (ER) could play an important role in drug toxicity by participating in the metabolic activation of drugs and could be a primarily attacked target by reactive metabolites. In this article, we summarize the generation and mechanism of reactive metabolites in ER stress and their associated cell death and inflammatory cascade, as well as the systematic modulation of unfolded protein response (UPR)-mediated adaptive pathways.


Asunto(s)
Apoptosis , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Respuesta de Proteína Desplegada , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/metabolismo
14.
Biochim Biophys Acta Rev Cancer ; 1877(1): 188655, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34780933

RESUMEN

Albumin, as the most abundant plasma protein, plays an integral role in the transport of a variety of exogenous and endogenous ligands in the bloodstream and extravascular spaces. For exogenous drugs, especially chemotherapeutic drugs, binding to and being delivered by albumin can significantly affect their efficacy. Meanwhile, albumin can also bind to many endogenous ligands, such as fatty acids, with important physiological significance that can affect tumor proliferation and metabolism. In this review, we summarize how albumin with unique properties affects chemotherapeutic drugs efficacy from the aspects of drug outcome in blood, toxicity, tumor accumulation and direct or indirect interactions with fatty acids, plus application of albumin-based carriers for anti-tumor drug delivery.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ácidos Grasos/metabolismo , Humanos , Ligandos , Neoplasias/tratamiento farmacológico , Unión Proteica , Albúmina Sérica/química , Albúmina Sérica/metabolismo
15.
J Nanobiotechnology ; 19(1): 435, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930293

RESUMEN

Tumor vessels can provide oxygen and nutrition for solid tumor tissue, create abnormal tumor microenvironment (TME), and play a vital role in the development, immune escape, metastasis and drug resistance of tumor. Tumor vessel-targeting therapy has become an important and promising direction in anti-tumor therapy, with the development of five anti-tumor therapeutic strategies, including vascular disruption, anti-angiogenesis, vascular blockade, vascular normalization and breaking immunosuppressive TME. However, the insufficient drug accumulation and severe side effects of vessel-targeting drugs limit their development in clinical application. Nanotechnology offers an excellent platform with flexible modified surface that can precisely deliver diverse cargoes, optimize efficacy, reduce side effects, and realize the combined therapy. Various nanomedicines (NMs) have been developed to target abnormal tumor vessels and specific TME to achieve more efficient vessel-targeting therapy. The article reviews tumor vascular abnormalities and the resulting abnormal microenvironment, the application of NMs in the tumor vessel-targeting strategies, and how NMs can improve these strategies and achieve multi-strategies combination to maximize anti-tumor effects.


Asunto(s)
Nanotecnología/métodos , Neoplasias/patología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/uso terapéutico , Humanos , Nanopartículas/química , Neoplasias/irrigación sanguínea , Neoplasias/tratamiento farmacológico , Neovascularización Patológica , Interferencia de ARN , Linfocitos T Citotóxicos/citología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo , Microambiente Tumoral , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
16.
Zhongguo Zhong Yao Za Zhi ; 46(12): 3165-3170, 2021 Jun.
Artículo en Chino | MEDLINE | ID: mdl-34467709

RESUMEN

Nucleic acid aptamers, broad-spectrum target-specific single-stranded oligonucleotides, serve as molecules in targeted therapy, targeted delivery and disease diagnosis for the treatment of tumor or microbial infection and clinical detection. Due to the existence of components in the use of traditional Chinese medicine(TCM), the target is difficult to concentrate and the specificity of treatment is poor. The effective components of TCM are toxic components, so a highly sensitive detection method is urgently needed to reduce the toxicity problem at the same time. The combined application of TCM and modern medical treatment strategy are difficult and cannot improve the therapeutic effect. Aptamers, advantageous in biosensors, aptamer-nanoparticles for targeted drug delivery, and aptamer-siRNA chimeras, are expected to connect Chinese medicinals with nanotechnology, diagnostic technology and combined therapies. We summarized the preparation, screening, and modification techniques of nucleic acid aptamers and the biomedical applications and advantages in therapy, targeting, and diagnosis, aiming at providing a reference for the in-depth research and development in TCM.


Asunto(s)
Aptámeros de Nucleótidos , Ácidos Nucleicos , Sistemas de Liberación de Medicamentos , Medicina Tradicional China , ARN Interferente Pequeño
17.
Am J Cancer Res ; 11(7): 3445-3460, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34354854

RESUMEN

Paclitaxel is a widely used anti-tumor chemotherapeutic drug. Solvent-based paclitaxel causes bone marrow suppression, allergic reactions, neurotoxicity and systemic toxicity, which are associated with non-specific cytotoxicity and side effects of fat-soluble solvents. Studies have explored various new nano-drug strategies of paclitaxel, including nanoparticle albumin-bound paclitaxel (nab-paclitaxel) to improve the water solubility and safety of paclitaxel. Nab-paclitaxel is a targeted solvent-free formulation that inhibits microtubule depolymerization to anticancer. It is easily taken up by tumor and immune cells owing to the nano-scaled size and superior biocompatibility. The internalized nab-paclitaxel exhibits significant immunostimulatory activities to promote cancer-immunity cycle. The aim of this study was to explore the synergistic effect of nab-paclitaxel in tumor antigen presentation, T cell activation, reversing the immunosuppressive pattern of tumor microenvironment (TME), and the synergistic effect with cytotoxic lymphocytes (CTLs) in clearance of tumor cells. The effects of nab-paclitaxel on modulation of cancer-immunity cycle, provides potential avenues for combined therapeutic rationale to improve efficacy of immunotherapy.

18.
Eur J Med Chem ; 221: 113519, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-33984805

RESUMEN

Arsenic (As), as well as its various compounds have been widely used for nearly 4000 years either as drugs or poisons. These compounds are valuable in the treatment of various diseases ranging from dermatosis to cancer, thereby emphasizing their important roles as therapeutic agents. The ability of As compounds, especially arsenic trioxide (ATO) in the treatment of acute promyelocytic leukemia (APL), has fundamentally altered people's understanding of the poison, and has become a major factor in the re-emergence of Western medicine candidates to treat leukemia and other solid tumors. However, long-term exposure to As has been correlated with numerous disadvantageous influences on health, particularly carcinogenesis. Importantly, accumulating evidence suggests that biotransformation of As, as a step to eliminate As from the human body, can induce alterations at the genetic and epigenetic levels, resulting in therapeutic effects or carcinogenesis. In this article, we aimed to provide a systematic overview of the primary contributions associated with As and its compounds, as well as the detailed mechanisms applied in APL cells and carcinogenic toxicology. This review may help to understand the underlying mechanisms and safe wide clinical applications of medicinal As along with its compounds.


Asunto(s)
Antineoplásicos/uso terapéutico , Arsenicales/uso terapéutico , Leucemia Promielocítica Aguda/tratamiento farmacológico , Antineoplásicos/efectos adversos , Arsenicales/efectos adversos , Humanos , Leucemia Promielocítica Aguda/metabolismo
19.
J Nanobiotechnology ; 19(1): 143, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001161

RESUMEN

Breast cancer (BC) is the most frequently diagnosed cancer with a low survival rate and one of the major causes of cancer-related death. Methotrexate (MTX) is an anti-tumor drug used in the treatment of BC. Poor dispersion in water and toxic side effects limit its clinical application. Gold nanoparticles (AuNPs), owing to their specific structures and unique biological and physiochemical properties, have emerged as potential vehicles for tumor targeting, bioimaging and cancer therapy. An innovative nano drug-loading system (Au @PDA-PEG-MTX NPs) was prepared for targeted treatment of BC. Au @PDA-PEG-MTX NPs under near infra-red region (NIR) irradiation showed effective photothermal therapy against MDA-MB-231 human BC cells growth in vitro by inducing apoptosis through triggering reactive oxygen species (ROS) overproduction and generating excessive heat. In vivo studies revealed deep penetration ability of Au @PDA-PEG-MTX NPs under NIR irradiation to find application in cancer-targeted fluorescence imaging, and exhibited effective photothermal therapy against BC xenograft growth by inducing apoptosis. Histopathological analysis, cellular uptake, cytotoxicity assay, and apoptosis experiments indicated that Au @PDA-PEG-MTX NPs possessed a good therapeutic effect with high biocompatibility and fewer side effects. This Au NPs drug-loading system achieved specific targeting of MTX to BC cells by surface functionalisation, fluorescence imaging under laser irradiation, combined photothermal-chemotherapy, and pH- and NIR- triggered hierarchical drug release.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Liberación de Fármacos , Oro/química , Nanopartículas del Metal/química , Metotrexato/farmacología , Terapia Fototérmica/métodos , Animales , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Femenino , Humanos , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Clin Pharmacokinet ; 60(5): 585-601, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33723723

RESUMEN

Drug metabolism is a critical process for the removal of unwanted substances from the body. In humans, approximately 80% of oxidative metabolism and almost 50% of the overall elimination of commonly used drugs can be attributed to one or more of various cytochrome P450 (CYP) enzymes from CYP families 1-3. In addition to the basic metabolic effects for elimination, CYP enzymes in vivo are capable of affecting the treatment outcomes in many cases. Drug-metabolizing CYP enzymes are mainly expressed in the liver and intestine, the two principal drug oxidation and elimination organs, where they can significantly influence the drug action, safety, and bioavailability by mediating phase I metabolism and first-pass metabolism. Furthermore, CYP-mediated local drug metabolism in the sites of action may also have the potential to impact drug response, according to the literature in recent years. This article underlines the ability of CYP enzymes to influence treatment outcomes by discussing CYP-mediated diversified drug metabolism in primary metabolic sites (liver and intestine) and typical action sites (brain and tumors) according to their expression levels and metabolic activity. Moreover, intrinsic and extrinsic factors of personal differential CYP phenotypes that contribute to interindividual variation of treatment outcomes are also reviewed to introduce the multifarious pivotal role of CYP-mediated metabolism and clearance in drug therapy.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Preparaciones Farmacéuticas , Humanos , Hígado , Microsomas Hepáticos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...