Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(6): e17493, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37408896

RESUMEN

Purpose: To explore the mechanisms by which abnormal female BMI affects oocyte quality, particularly whether it involves the alteration of gene expression patterns and how these patterns may impact clinical outcomes. Methods: In Part 1, we performed a retrospective study to compare the clinical outcomes between the female BMI ≥25 kg/m2 and female BMI ≤20 kg/m2 groups. In Part 2, we performed the transcriptome analyses based on the GSE87201 dataset. Results: In Part 1, among the clinical outcomes, only the grade 1-2 embryo rate at day 3 of ICSI cycles was significantly different between the two BMI groups; the other outcomes were not. In Part 2, compared with the BMI ≤20 kg/m2 group, the oocyte gene expression pattern of the BMI ≥25 kg/m2 group seemed to result in better oocyte tolerance to exogenous stress, such as intracytoplasmic sperm injection (ICSI). It seemed to explain the result of Part 1 that the BMI ≥25 kg/m2 group had better day-3 embryo quality after ICSI than the BMI ≤20 kg/m2 group. Conclusions: Abnormal female BMI affects oocyte quality by altering the gene expression patterns of oocytes. While a female BMI ≥25 kg/m2 is known to have certain detrimental effects on ART, our findings suggest that it can also confer some benefits to oocytes.

2.
Chem Biomed Imaging ; 1(3): 268-285, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37388961

RESUMEN

Chronic lung diseases, such as idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), are major leading causes of death worldwide and are generally associated with poor prognoses. The heterogeneous distribution of collagen, mainly type I collagen associated with excessive collagen deposition, plays a pivotal role in the progressive remodeling of the lung parenchyma to chronic exertional dyspnea for both IPF and COPD. To address the pressing need for noninvasive early diagnosis and drug treatment monitoring of pulmonary fibrosis, we report the development of human collagen-targeted protein MRI contrast agent (hProCA32.collagen) to specifically bind to collagen I overexpressed in multiple lung diseases. When compared to clinically approved Gd3+ contrast agents, hProCA32.collagen exhibits significantly better r1 and r2 relaxivity values, strong metal binding affinity and selectivity, and transmetalation resistance. Here, we report the robust detection of early and late-stage lung fibrosis with stage-dependent MRI signal-to-noise ratio (SNR) increase, with good sensitivity and specificity, using a progressive bleomycin-induced IPF mouse model. Spatial heterogeneous mapping of usual interstitial pneumonia (UIP) patterns with key features closely mimicking human IPF, including cystic clustering, honeycombing, and traction bronchiectasis, were noninvasively detected by multiple MR imaging techniques and verified by histological correlation. We further report the detection of fibrosis in the lung airway of an electronic cigarette-induced COPD mouse model, using hProCA32.collagen-enabled precision MRI (pMRI), and validated by histological analysis. The developed hProCA32.collagen is expected to have strong translational potential for the noninvasive detection and staging of lung diseases, and facilitating effective treatment to halt further chronic lung disease progression.

3.
Syst Biol Reprod Med ; 69(3): 245-254, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36772853

RESUMEN

Artificial oocyte activation (AOA) is considered an effective method to improve clinical outcomes in patients with some forms of male factor infertility and does not increase the risk of birth defects. However, the effects of AOA on patients with multiple morphological abnormalities of the sperm flagella (MMAF) caused by a DNAH1 mutation are still unknown. To explore the effects, our study analyzed a case with MMAF due to DNAH1 homozygous mutation that underwent testicular sperm extraction (TESE) combined with intracytoplasmic sperm injection (ICSI). The case had 28 MII oocytes. The 28 oocytes were divided randomly and equally into AOA and non-AOA groups. Ionomycin was used for AOA. We compared the clinical outcomes of two groups and selected three blastulation failure embryos from each group for transcriptome analysis (Data can be accessed through GSE216618). Differentially expressed genes (DEGs) were determined with an adjusted p-value <0.05 and a |log2-fold change| ≥1. The comparison of clinical outcomes showed that the two pronuclei (2PN) rate and grade 1-2 embryo rate at day 3 were not significantly different between the two groups. Transcriptome analyses of blastulation failed embryos showed that the use of AOA had potential risks of chromosome structure defects, transcriptional regulation defects, and epigenetic defects. In conclusion, when the case with MMAF due to DNAH1 mutation underwent TESE-ICSI, ionomycin-induced oocyte activation could not improve the clinical outcomes and introduced the risks of chromosome structure defect, transcriptional regulation defect, and epigenetic defect.


Asunto(s)
Infertilidad Masculina , Semen , Femenino , Humanos , Masculino , Embarazo , Flagelos , Infertilidad Masculina/genética , Ionomicina/farmacología , Oocitos , Índice de Embarazo , Espermatozoides
4.
Reprod Fertil Dev ; 33(18): 881-885, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34852900

RESUMEN

Context The timing of early cumulus cell removal (ECCR) can be changed within a range. The change has an effect on the multiple pronuclei (MPN) rate and the exposure time of oocytes to sperm waste products. The timing of ECCR effects the outcomes of assisted reproductive technology, however, it is still unclear what time is best for ECCR. Aims To find the best time for ECCR based on clinical outcomes in order to increase the success rate of assisted reproductive technology. Methods A retrospective study was performed. Cycles were categorised into six groups according to the timing of ECCR. The clinical outcomes of these six groups were compared by Kruskal-Wallis test and Pearson X 2 test. Key results The timing of ECCR had a significant effect on the MPN rate, 0PN without cleavage rate and grade 1-2 embryo rate at Day3. Among our six time groups of ECCR, the cumulus cell removal ≤4h post-insemination group had the highest MPN rate and grade 1-2 embryo rate at Day3, and the 5.5h

Asunto(s)
Células del Cúmulo/fisiología , Fertilización/fisiología , Inseminación Artificial , Técnicas Reproductivas Asistidas , Transferencia de Embrión , Femenino , Humanos , Masculino , Inducción de la Ovulación , Embarazo , Índice de Embarazo , Estudios Retrospectivos , Inyecciones de Esperma Intracitoplasmáticas
5.
J Cancer ; 12(21): 6543-6552, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659545

RESUMEN

Aberrant expression of P68 RNA helicase (p68), a prototypical member of the DEAD box family of RNA helicases, contributes to tumor development and progression. P68 tyrosine phosphorylation induced by PDGF signaling facilitates cancer metastasis by promoting EMT. In this report, we show that p68 promotes breast cancer cell EMT and cell migration by upregulation of PDGF receptor ß (PDGFR-ß). Knockdown of p68 in MDA-MB-231 and BT549 cells significantly decreases PDGFR-ß both in mRNA and protein levels. P68 promotes EMT and cell migration in response to PDGF-BB stimulation via upregulation of PDGFR-ß, suggesting that p68 enhances PDGF signaling by a positive feedback loop in cancer cells. Furthermore, our study reveals that p68 mediates the effects of PDGFR-ß in regulation of androgen receptor (AR) in breast cancer cells. We demonstrate that p68 and PDGFR-ß co-regulate AR expression and promote androgen-mediated proliferation in breast cancer cells. Our studies uncover an important pathway of p68-PDGFR-ß axis in promoting breast cancer progression.

6.
iScience ; 24(10): 103165, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34693222

RESUMEN

Persistent activation of fibroblasts and resistance of myofibroblasts to turnover play important roles in organ-tissue fibrosis development and progression. The mechanism that mediates apoptosis resistance of myofibroblasts is not understood. Here, we report that myofibroblasts express and secrete PKM2. Extracellular PKM2 (EcPKM2) facilitates progression of fibrosis by protecting myofibroblasts from apoptosis. EcPKM2 upregulates arginase-1 expression in myofibroblasts and therefore facilitates proline biosynthesis and subsequent collagen production. EcPKM2 interacts with integrin αvß3 on myofibroblasts to activate FAK-PI3K signaling axis. Activation of FAK-PI3K by EcPKM2 activates downstream NF-κB survival pathway to prevent myofibroblasts from apoptosis. On the other hand, activation of FAK- PI3K by EcPKM2 suppresses PTEN to subsequently upregulate arginase-1 in myofibroblasts. Our studies uncover an important mechanism for organ fibrosis progression. More importantly, an antibody disrupting the interaction between PKM2 and integrin αvß3 is effective in reversing fibrosis, suggesting a possible therapeutic strategy and target for treatment of organ fibrosis.

7.
Theranostics ; 11(19): 9331-9341, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646373

RESUMEN

Rationale: Fibrosis is a pathologic condition of abnormal accumulation of collagen fibrils. Collagen is a major extracellular matrix (ECM) protein synthesized and secreted by myofibroblasts, composing mainly (Gly-X-Y)n triplet repeats with >30% Gly residue. During fibrosis progression, myofibroblasts must upregulate glycine metabolism to meet the high demands of amino acids for collagen synthesis. Method: Expression of PKM2 in myofibroblasts was analyzed in cultured fibroblasts and fibrosis disease tissues. Functional roles of PKM2 and PKM2 activator in biosynthesis of serine → glycine and production of collagen from glycolysis intermediates were assayed in cultured activated LX-2 and human primary lung fibroblast cells. Mouse models of Liver, lung, and pancreas fibrosis were employed to analyze treatment effects of PKM2 activator in organ tissue fibrosis. Results: We report here that myofibroblast differentiation upregulates pyruvate kinase M2 (PKM2) and promotes dimerization of PKM2. Dimer PKM2 slows the flow rate of glycolysis and channels glycolytic intermediates to de novo glycine synthesis, which facilitates collagen synthesis and secretion in myofibroblasts. Our results show that PKM2 activator that converts PKM2 dimer to tetramer, inhibits fibrosis progression in mouse models of liver, lung, and pancreatic fibrosis. Furthermore, metabolism alteration by dimer PKM2 increases NADPH production, which consequently protects myofibroblasts from apoptosis. Conclusion: Our study uncovers a novel role of PKM2 in tissue/organ fibrosis, suggesting a possible strategy for treatment of fibrotic diseases using PKM2 activator.


Asunto(s)
Fibrosis/metabolismo , Glicina/metabolismo , Piruvato Quinasa/metabolismo , Animales , Apoptosis , Diferenciación Celular , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Femenino , Fibroblastos/metabolismo , Fibrosis/fisiopatología , Glicina/fisiología , Glucólisis/efectos de los fármacos , Humanos , Hígado/patología , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Miofibroblastos/metabolismo , Miofibroblastos/fisiología , Páncreas/patología , Piruvato Quinasa/fisiología , Transducción de Señal
8.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(9): 845-848, 2021 Sep 10.
Artículo en Chino | MEDLINE | ID: mdl-34487527

RESUMEN

OBJECTIVE: To assess the application value of mapping allele with resolved carrier status (MaReCs) technique for preimplantation genetic testing (PGT). METHODS: The characteristics of MaReCs for PGT and outcome of patients were retrospectively analyzed. RESULTS: Compared with those who could not use the technique, carriers who have used the MaReCs technique were younger, had significantly higher level of anti-Mullerian hormone, more antral follicles, occytes, mature occytes, biopsied embryos and euploid embryos, and lower risks for de novo chromosomal abnormality (P<0.05). It was necessary for couples with fewer oocytes, mature oocytes and balstocyst to preserve discarded embryos to facilitate the test. Carriers who have used the MaReCs technique had higher clinical pregnancy rate and abortion rate compared with those undergoing routine PGT, albeit no significant difference was found between the two groups (P> 0.05). Carriers undergoing MaReCs test could preferentially select embryos with normal chromosome structures for the transfer. CONCLUSION: Application of MaReCs has a prerequisite for having a minimum number of occytes and biopsied embryos and using discarded embryos sometimes. MaReCs is efficient for the detection of carrier status of embryos and attaining higher rate of pregnancy and live birth, which can significantly improve the outcome for couples carrying chromosomal translocations.


Asunto(s)
Diagnóstico Preimplantación , Translocación Genética , Alelos , Aneuploidia , Blastocisto , Femenino , Fertilización In Vitro , Pruebas Genéticas , Humanos , Embarazo , Estudios Retrospectivos
9.
Commun Biol ; 4(1): 1087, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34531529

RESUMEN

Chronic Liver Diseases (CLD) are characterized by abnormal accumulation of collagen fibrils, neo-angiogenesis, and sinusoidal remodeling. Collagen deposition along with intrahepatic angiogenesis and sinusoidal remodeling alters sinusoid structure resulting in portal hypertension, liver failure, and other complications. Efforts were made to develop treatments for CLDs. However, the success of such treatments is limited and unpredictable. We report a strategy for CLD treatment by induction of integrin αvß3 mediated cell apoptosis using a rationally designed protein (ProAgio). ProAgio is designed to target integrin αvß3 at a novel site. Integrin αvß3 is highly expressed in activated Hepatic Stellate Cells (HSC), angiogenic endothelium, and capillarized Liver Sinusoidal Endothelial Cells (LSEC). ProAgio induces apoptosis of these disease causative cells. Tests with liver fibrosis mouse models demonstrate that ProAgio reverses liver fibrosis and relieves blood flow resistance by depleting activated HSC and capillarized LSEC. Our studies demonstrate an effective approach for CLD treatment.


Asunto(s)
Apoptosis , Integrina alfaVbeta3/química , Hepatopatías/terapia , Ingeniería de Proteínas , Animales , Enfermedad Crónica/terapia , Modelos Animales de Enfermedad , Ratones
10.
Front Pharmacol ; 12: 726586, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34393802

RESUMEN

Although a few studies show that the use of electronic nicotine delivery systems (ENDS) may ameliorate objective and subjective outcomes in COPD smokers who switched to electronic cigarettes, it is unclear whether e-cigarette exposure alters lung pathological features and inflammatory response in COPD. Here, we employed ßENaC-overexpressing mice bearing COPD-like pulmonary abnormality, and exposed them to ENDS. We found that ENDS exposure aggravated airspace enlargement and mucus production in ßENaC-overexpressing mice, which was associated with increased MMP12 and Muc5ac, respectively. ENDS exposure to mice significantly increased the numbers of macrophages, particularly in M2 macrophages in bronchoalveolar lavage (BAL) fluid, despite ENDS did not induce M2 macrophage polarization in a cultured murine macrophage cell line (RAW264.7). There were no changes in neutrophils in BAL fluid by ENDS exposure. Multiple cytokine productions were increased including M-CSF, IL-1r α , IL-10, and TGF-ß1, in BAL fluid from mice when exposed to ENDS. The Sirius Red staining and hydroxyproline assay showed ENDS-exposed mice displayed enhanced fibrotic phenotypes compared to control mice. In conclusion, ENDS exposure enhances airspace enlargement, mucus secretion, and fibrogenesis in COPD mice. This is associated with increased MMP12, inflammatory responses, and M2 macrophage phenotype. This study provides pre-clinical data implicating that electronic cigarette exposure is not safe in COPD patients who want to replace traditional cigarettes with ENDS.

11.
J Exp Med ; 218(4)2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33561195

RESUMEN

Fibrotic tumor stroma plays an important role in facilitating triple-negative breast cancer (TNBC) progression and chemotherapeutic resistance. We previously reported a rationally designed protein (ProAgio) that targets integrin αvß3 at a novel site. ProAgio induces apoptosis via the integrin. Cancer-associated fibroblasts (CAFs) and angiogenic endothelial cells (aECs) in TNBC tumor express high levels of integrin αvß3. ProAgio effectively induces apoptosis in CAFs and aECs. The depletion of CAFs by ProAgio reduces intratumoral collagen and decreases growth factors released from CAFs in the tumor, resulting in decreased cancer cell proliferation and apoptotic resistance. ProAgio also eliminates leaky tumor angiogenic vessels, which consequently reduces tumor hypoxia and improves drug delivery. The depletion of CAFs and reduction in hypoxia by ProAgio decreases lysyl oxidase (LOX) secretion, which may play a role in the reduction of metastasis. ProAgio stand-alone or in combination with a chemotherapeutic agent provides survival benefit in TNBC murine models, highlighting the therapeutic potential of ProAgio as a treatment strategy.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Neovascularización Patológica/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/irrigación sanguínea , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Doxorrubicina/uso terapéutico , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Femenino , Humanos , Hipoxia/tratamiento farmacológico , Integrina alfaVbeta3/antagonistas & inhibidores , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neovascularización Patológica/metabolismo , Paclitaxel/uso terapéutico , Proteína-Lisina 6-Oxidasa/metabolismo , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento , Neoplasias de la Mama Triple Negativas/patología , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Cell Mol Gastroenterol Hepatol ; 11(1): 161-179, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32810598

RESUMEN

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is resistant to most therapeutics owing to dense fibrotic stroma orchestrated by cancer-associated pancreatic stellate cells (CAPaSC). CAPaSC also support cancer cell growth, metastasis, and resistance to apoptosis. Currently, there is no effective therapy for PDAC that specifically targets CAPaSC. We previously reported a rationally designed protein, ProAgio, that targets integrin αvß3 at a novel site and induces apoptosis in integrin αvß3-expressing cells. Because both CAPaSC and angiogenic endothelial cells express high levels of integrin αvß3, we aimed to analyze the effects of ProAgio in PDAC tumor. METHODS: Expression of integrin αvß3 was examined in both patient tissue and cultured cells. The effects of ProAgio on CAPaSC were analyzed using an apoptosis assay kit. The effects of ProAgio in PDAC tumor were studied in 3 murine tumor models: subcutaneous xenograft, genetic engineered (KrasG12D; p53R172H; Pdx1-Cre, GEM-KPC) mice, and an orthotopic KrasG12D; p53R172H; Pdx1-Cre (KPC) model. RESULTS: ProAgio induces apoptosis in CAPaSC. ProAgio treatment significantly prolonged survival of a genetically engineered mouse-KPC and orthotopic KPC mice alone or in combination with gemcitabine (Gem). ProAgio specifically induced apoptosis in CAPaSC, resorbed collagen, and opened collapsed tumor vessels without an increase in angiogenesis in PDAC tumor, enabling drug delivery into the tumor. ProAgio decreased intratumoral insulin-like growth factor 1 levels as a result of depletion of CAPaSC and consequently decreased cytidine deaminase, a Gem metabolism enzyme in cancer cells, and thereby reduced resistance to Gem-induced apoptosis. CONCLUSIONS: Our study suggests that ProAgio is an effective PDAC treatment agent because it specifically depletes CAPaSC and eliminates tumor angiogenesis, thereby enhancing drug delivery and Gem efficacy in PDAC tumors.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Integrina alfaVbeta3/antagonistas & inhibidores , Neoplasias Pancreáticas/tratamiento farmacológico , Células Estrelladas Pancreáticas/efectos de los fármacos , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Integrina alfaVbeta3/análisis , Integrina alfaVbeta3/metabolismo , Ratones , Ratones Transgénicos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Células Estrelladas Pancreáticas/patología , Cultivo Primario de Células , Ensayos Antitumor por Modelo de Xenoinjerto
13.
iScience ; 23(11): 101684, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33196019

RESUMEN

Cancer cells alter their nutrition metabolism to cope the stressful environment. One important metabolism adjustment is that cancer cells activate glutaminolysis in response to the reduced carbon from glucose entering into the TCA cycle due to inactivation of several enzymes in glycolysis. An important question is how the cancer cells coordinate the changes of glycolysis and glutaminolysis. In this report, we demonstrate that the pyruvate kinase inactive dimer PKM2 facilitates activation of glutaminolysis. Our experiments show that growth stimulations promote PKM2 dimer. The dimer PKM2 plays a role in regulation of glutaminolysis by upregulation of mitochondrial glutaminase I (GLS-1). PKM2 dimer regulates the GLS-1 expression by controlling internal ribosome entry site (IRES)-dependent c-myc translation. Growth stimulations promote PKM2 interacting with c-myc IRES-RNA, thus facilitating c-myc IRES-dependent translation. Our study reveals an important linker that coordinates the metabolism adjustment in cancer cells.

14.
J Assist Reprod Genet ; 37(3): 619-627, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31901111

RESUMEN

OBJECTIVE: To investigate the role of the cell number at day 3 in blastocyst selection. DESIGN: Observational, retrospective, single-center clinical study. PATIENT(S): In part 1, 1211 single vitrified-warmed blastocyst transfer (SVBT) cycles were identified and reviewed. All the cycles were conventional in vitro fertilization (IVF) cycles and the first embryo transfer cycles. Most of patients had a risk of ovarian hyperstimulation syndrome and were young. In part 2, 864 IVF-derived blastocysts from 292 infertile couples underwent trophectoderm (TE) biopsy for preimplantation genetic testing for aneuploidies (PGT-A). INTERVENTION(S): No patient intervention. MAIN OUTCOME MEASURE(S): The first part was an analysis of the correlation between the cell number at day 3 and live birth rate (LBR) after SVBT, and the second part was an analysis of the correlation between the cell number at day 3 and euploid rate (ER) of blastocysts. RESULT(S): In part 1, after correcting for the effects of other confounders, the cell number at day 3 had no significant effect on the LBR (OR 1.001, 95% CI 0.938-1.068). In part 2, after correcting for the effects of other confounders, the cell number at day 3 had no significant effect on the ER (OR 0.960, 95% CI 0.866-1.063). CONCLUSION(S): When the vitrified-warmed blastocysts obtained by conventional IVF are transferred into young patients, the cell number at day 3 is not a strong predictor of the LBR. In addition, the cell number at day 3 is not a strong predictor of ER of IVF-derived blastocysts too.


Asunto(s)
Blastocisto/citología , Transferencia de Embrión , Desarrollo Embrionario/genética , Diagnóstico Preimplantación , Adulto , Tasa de Natalidad , Criopreservación , Implantación del Embrión/genética , Femenino , Fertilización In Vitro , Pruebas Genéticas , Humanos , Infertilidad/genética , Infertilidad/patología , Nacimiento Vivo/genética , Embarazo
15.
Nat Commun ; 10(1): 4777, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31664017

RESUMEN

Early diagnosis and noninvasive detection of liver fibrosis and its heterogeneity remain as major unmet medical needs for stopping further disease progression toward severe clinical consequences. Here we report a collagen type I targeting protein-based contrast agent (ProCA32.collagen1) with strong collagen I affinity. ProCA32.collagen1 possesses high relaxivities per particle (r1 and r2) at both 1.4 and 7.0 T, which enables the robust detection of early-stage (Ishak stage 3 of 6) liver fibrosis and nonalcoholic steatohepatitis (Ishak stage 1 of 6 or 1 A Mild) in animal models via dual contrast modes. ProCA32.collagen1 also demonstrates vasculature changes associated with intrahepatic angiogenesis and portal hypertension during late-stage fibrosis, and heterogeneity via serial molecular imaging. ProCA32.collagen1 mitigates metal toxicity due to lower dosage and strong resistance to transmetallation and unprecedented metal selectivity for Gd3+ over physiological metal ions with strong translational potential in facilitating effective treatment to halt further chronic liver disease progression.


Asunto(s)
Medios de Contraste/química , Gadolinio/química , Hipertensión Portal/diagnóstico por imagen , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Enfermedad Crónica , Diagnóstico Precoz , Humanos
16.
Mol Ther Oncolytics ; 14: 188-195, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31312717

RESUMEN

Despite reports of successful clinical cases, many tumors appear to resist infection by oncolytic viruses (OVs). To circumvent this problem, an armed vesicular stomatitis virus was constructed by inserting a transgene to express Smac/DIABLO during virus infection (VSV-S). Endogenous Smac in HeLa cells was diminished during wtVSV infection, whereas the Smac level was enhanced during VSV-S infection. Apoptosis was readily induced by VSV-S, but not wtVSV, infection. More importantly, the tumor volume was reduced to a larger extent when xenografts of 4T1 cells in BALB/c mice and OV-resistant T-47D cells in nude mice were intratumorally injected with VSV-S. VSV-S represents a novel mechanism to overcome tumor resistance, resulting in more significant tumor regression due to enhanced apoptosis.

18.
Neurotherapeutics ; 15(3): 770-784, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29869055

RESUMEN

Ischemic stroke remains a serious threat to human life. Generation of neuronal and vascular cells is an endogenous regenerative mechanism in the adult brain, which may contribute to tissue repair after stroke. However, the regenerative activity is typically insufficient for significant therapeutic effects after brain injuries. Pyruvate kinase isoform M2 (PKM2) is a key regulator for energy metabolism. PKM2 also has nonmetabolic roles involving regulations of gene expression, cell proliferation, and migration in cancer cells as well as noncancerous cells. In a focal ischemic stroke mouse model, recombinant PKM2 (rPKM2) administration (160 ng/kg, intranasal delivery) at 1 h after stroke showed the significant effect of a reduced infarct volume of more the 60%. Delayed treatment of rPKM2, however, lost the acute neuroprotective effect. We then tested a novel hypothesis that delayed treatment of PKM2 might show proregenerative effects for long-term functional recovery and this chronic action could be mediated by its downstream STAT3 signaling. rPKM2 (160 ng/kg) was delivered to the brain using noninvasive intranasal administration 24 h after the stroke and repeated every other day. Western blot analysis revealed that, 7 days after the stroke, the levels of PKM2 and phosphorylated STAT3 and the expression of angiogenic factors VEGF, Ang-1, and Tie-2 in the peri-infarct region were significantly increased in the rPKM2 treatment group compared with those of the stroke vehicle group. To label proliferating cells, 5-bromo-2'-deoxyuridine (BrdU, 50 mg/kg, i.p.) was injected every day starting 3 days after stroke. At 14 days after stroke, immunohistochemistry showed that rPKM2 increased cell homing of doublecortin (DCX)-positive neuroblasts to the ischemic cortex. In neural progenitor cell (NPC) cultures, rPKM2 (0.4-4 nM) increased the expression of integrin ß1 and the activation/phosphorylation of focal adhesion kinase (FAK). A mediator role of FAK in PKM2-promoted cell migration was verified in FAK-knockout fibroblast cultures. In the peri-infarct region of the brain, increased numbers of Glut-1/BrdU and NeuN/BrdU double-positive cells indicated enhanced angiogenesis and neurogenesis, respectively, compared to stroke vehicle mice. Using Laser Doppler imaging, we observed better recovery of the local blood flow in the peri-infarct region of rPKM2-treated mice 14 days after stroke. Meanwhile, rPKM2 improved the sensorimotor functional recovery measured by the adhesive removal test. Inhibiting the STAT3 phosphorylation/activation by the STAT3 inhibitor, BP-1-102 (3 mg/kg/day, o.g.), abolished all beneficial effects of rPKM2 in the stroke mice. Taken together, this investigation provides the first evidence demonstrating that early treatment of rPKM2 shows an acute neuroprotective effect against ischemic brain damage, whereas delayed rPKM2 treatment promotes regenerative activities in the poststroke brain leading to better functional recovery. The underlying mechanism involves activation of the STAT3 and FAK signals in the poststroke brain.


Asunto(s)
Proteína-Tirosina Quinasas de Adhesión Focal/genética , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Neovascularización Fisiológica/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Piruvato Quinasa , Recuperación de la Función/efectos de los fármacos , Factor de Transcripción STAT3/genética , Animales , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Circulación Cerebrovascular/efectos de los fármacos , Modelos Animales de Enfermedad , Proteína Doblecortina , Fibroblastos/efectos de los fármacos , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Infarto de la Arteria Cerebral Media/fisiopatología , Ratones , Ratones Endogámicos C57BL , Fosfopiruvato Hidratasa/metabolismo , Piruvato Quinasa/farmacología , Piruvato Quinasa/uso terapéutico , Factor de Transcripción STAT3/metabolismo , Células Madre/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
19.
Nat Commun ; 7: 11675, 2016 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-27241473

RESUMEN

Integrin αvß3 expression is altered in various diseases and has been proposed as a drug target. Here we use a rational design approach to develop a therapeutic protein, which we call ProAgio, that binds to integrin αvß3 outside the classical ligand-binding site. We show ProAgio induces apoptosis of integrin αvß3-expressing cells by recruiting and activating caspase 8 to the cytoplasmic domain of integrin αvß3. ProAgio also has anti-angiogenic activity and strongly inhibits growth of tumour xenografts, but does not affect the established vasculature. Toxicity analyses demonstrate that ProAgio is not toxic to mice. Our study reports a new integrin-targeting agent with a unique mechanism of action, and provides a template for the development of integrin-targeting therapeutics.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Apoptosis/efectos de los fármacos , Diseño de Fármacos , Integrina alfaVbeta3/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Secuencia de Aminoácidos/genética , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Sitios de Unión/genética , Línea Celular , Femenino , Humanos , Ligandos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Simulación del Acoplamiento Molecular , Terapia Molecular Dirigida/métodos , Neoplasias/irrigación sanguínea , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neovascularización Patológica/patología , Unión Proteica/genética , Ingeniería de Proteínas/métodos , Estructura Terciaria de Proteína , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Wound Repair Regen ; 24(2): 328-36, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-26808610

RESUMEN

Neutrophils infiltration/activation following wound induction marks the early inflammatory response in wound repair. However, the role of the infiltrated/activated neutrophils in tissue regeneration/proliferation during wound repair is not well understood. Here, we report that infiltrated/activated neutrophils at wound site release pyruvate kinase M2 (PKM2) by its secretive mechanisms during early stages of wound repair. The released extracellular PKM2 facilitates early wound healing by promoting angiogenesis at wound site. Our studies reveal a new and important molecular linker between the early inflammatory response and proliferation phase in tissue repair process.


Asunto(s)
Neovascularización Fisiológica , Neutrófilos/metabolismo , Piruvato Quinasa/metabolismo , Cicatrización de Heridas/fisiología , Heridas y Lesiones/enzimología , Heridas y Lesiones/patología , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Matriz Extracelular/patología , Inmunohistoquímica , Inflamación/enzimología , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA