Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 615, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890582

RESUMEN

BACKGROUND: Nematodes are the most abundant and diverse metazoans on Earth, and are known to significantly affect ecosystem functioning. A better understanding of their biology and ecology, including potential adaptations to diverse habitats and lifestyles, is key to understanding their response to global change scenarios. Mitochondrial genomes offer high species level characterization, low cost of sequencing, and an ease of data handling that can provide insights into nematode evolutionary pressures. RESULTS: Generally, nematode mitochondrial genomes exhibited similar structural characteristics (e.g., gene size and GC content), but displayed remarkable variability around these general patterns. Compositional strand biases showed strong codon position specific G skews and relationships with nematode life traits (especially parasitic feeding habits) equal to or greater than with predicted phylogeny. On average, nematode mitochondrial genomes showed low non-synonymous substitution rates, but also high clade specific deviations from these means. Despite the presence of significant mutational saturation, non-synonymous (dN) and synonymous (dS) substitution rates could still be significantly explained by feeding habit and/or habitat. Low ratios of dN:dS rates, particularly associated with the parasitic lifestyles, suggested the presence of strong purifying selection. CONCLUSIONS: Nematode mitochondrial genomes demonstrated a capacity to accumulate diversity in composition, structure, and content while still maintaining functional genes. Moreover, they demonstrated a capacity for rapid evolutionary change pointing to a potential interaction between multi-level selection pressures and rapid evolution. In conclusion, this study helps establish a background for our understanding of the potential evolutionary pressures shaping nematode mitochondrial genomes, while outlining likely routes of future inquiry.


Asunto(s)
Genoma Mitocondrial , Genómica , Nematodos , Filogenia , Selección Genética , Animales , Nematodos/genética , Genómica/métodos , Composición de Base , Evolución Molecular , Codón/genética
2.
Iran J Immunol ; 21(1): 37-52, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38314669

RESUMEN

Background: The imbalance between M1 and M2 macrophage activation is closely associated with the pathogenesis of inflammatory bowel diseases (IBDs). Sulforaphane (SFN) plays an important role in the treatment of inflammatory diseases. Objective: To investigate the effect of SFN on macrophage polarization and its underlying regulatory mechanism. Methods: Mouse bone marrow-derived macrophages (BMDMs) were treated with SFN and an Nrf2 inhibitor, Brusatol. M1 macrophages were induced by LPS and IFN-γ stimulation, whereas M2 macrophages were induced by stimulation with IL-4 and IL-13. LPS-stimulated BMDMs were co-cultured with Caco-2 cells. Flow cytometry, qRT-PCR, and Western blot were performed to assess macrophage polarization. Cell function was assessed using CCK8 assay, transepithelial electrical resistance (TEER) assay, and biochemical analysis. Results: Higher concentrations of SFN resulted in better intervention effects, with an optimal concentration of 10 µM. SFN decreased the levels of IL-12, IL-6, and TNF-α, as well as the percentages of CD16/32 in M1 BMDMs. At the same time, SFN increased the levels of YM1, Fizz1, and Arg1 as well as the percentages of CD206+ cells in M2 BMDMs. In addition, SFN enhanced the accumulation of Nrf2, NQO1, and HO-1 in M1 BMDMs, and the downregulation of Nrf2 reversed the regulatory effect of SFN on M1/M2 macrophages. LPS-stimulated BMDMs induced Caco-2 cell damage, which was partially alleviated by SFN. Conclusion: Our findings indicate that SFN may act as an Nrf2 agonist to regulate macrophage polarization from M1 to M2. Furthermore, SFN may represent a potential protective ingredient against IBD.


Asunto(s)
Isotiocianatos , Lipopolisacáridos , Activación de Macrófagos , Sulfóxidos , Ratones , Humanos , Animales , Células CACO-2 , Lipopolisacáridos/farmacología , Factor 2 Relacionado con NF-E2/farmacología , Macrófagos
3.
J Nanobiotechnology ; 21(1): 68, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849981

RESUMEN

Hepatocellular carcinoma (HCC) has the sixth-highest new incidence and fourth-highest mortality worldwide. Transarterial chemoembolization (TACE) is one of the primary treatment strategies for unresectable HCC. However, the therapeutic effect is still unsatisfactory due to the insufficient distribution of antineoplastic drugs in tumor tissues and the worsened post-embolization tumor microenvironment (TME, e.g., hypoxia and reduced pH). Recently, using nanomaterials as a drug delivery platform for TACE therapy of HCC has been a research hotspot. With the development of nanotechnology, multifunctional nanoplatforms have been developed to embolize the tumor vasculature, creating conditions for improving the distribution and bioavailability of drugs in tumor tissues. Currently, the researchers are focusing on functionalizing nanomaterials to achieve high drug loading efficacy, thorough vascular embolization, tumor targeting, controlled sustained release of drugs, and real-time imaging in the TACE process to facilitate precise embolization and enable therapeutic procedures follow-up imaging of tumor lesions. Herein, we summarized the recent advances and applications of functionalized nanomaterials based on TACE against HCC, believing that developing these functionalized nanoplatforms may be a promising approach for improving the TACE therapeutic effect of HCC.


Asunto(s)
Carcinoma Hepatocelular , Quimioembolización Terapéutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Disponibilidad Biológica , Sistemas de Liberación de Medicamentos , Microambiente Tumoral
4.
Nat Commun ; 8(1): 363, 2017 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-28842558

RESUMEN

B lymphocyte-induced maturation protein-1 (Blimp-1) ensures B-cell differentiation into the plasma cell stage, and its instability constitutes a crucial oncogenic element in certain aggressive cases of activated B cell-like diffuse large B-cell lymphoma (ABC-DLBCL). However, the underlying degradation mechanisms and their possible therapeutic relevance remain unexplored. Here, we show that N-terminal misfolding mutations in ABC-DLBCL render Blimp-1 protein susceptible to proteasome-mediated degradation but spare its transcription-regulating activity. Mechanistically, whereas wild-type Blimp-1 metabolism is triggered in the nucleus through PML-mediated sumoylation, the degradation of lymphoma-associated mutants is accelerated by subversion of this pathway to Hrd1-mediated cytoplasmic sequestration and ubiquitination. Screening experiments identifies the heat shock protein 70 (HSP70) that selects Blimp-1 mutants for Hrd1 association, and HSP70 inhibition restores their nuclear accumulation and oncorepressor activities without disrupting normal B-cell maturation. Therefore, HSP70-Hrd1 axis represents a potential therapeutic target for restoring the oncorepressor activity of unstable lymphoma-associated Blimp-1 mutants.The transcriptional repressor Blimp-1 has an important role in B-cell differentiation. Here the authors show that lymphoma-associated Blimp-1 mutants are selectively recognized by HSP70-Hrd1, which leads to their accelerated degradation and propose HSP70 inhibition as a therapeutic approach for certain lymphomas.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Linfoma de Células B Grandes Difuso/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Linfocitos B/patología , Línea Celular Tumoral , Células HEK293 , Proteínas HSP70 de Choque Térmico/genética , Células HeLa , Humanos , Immunoblotting , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Ratones Endogámicos NOD , Ratones SCID , Microscopía Fluorescente , Mutación , Factor 1 de Unión al Dominio 1 de Regulación Positiva/química , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Pliegue de Proteína , Nucleósidos de Purina/farmacología , Interferencia de ARN , Ubiquitina-Proteína Ligasas/genética
6.
Leuk Lymphoma ; 55(5): 1151-7, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-23841505

RESUMEN

Abstract We evaluated the efficacy of the anti-CD20 monoclonal antibody rituximab in combination with the mammalian target of rapamycin (mTOR) inhibitor everolimus for treating diffuse large B-cell lymphoma (DLBCL). The combination of rituximab and everolimus was more effective for inhibiting cell growth compared with single-agent therapy. An increase in G0/G1 cell cycle arrest and an increased population of cells in apoptosis were observed in the combination treatment group. The addition of rituximab reduced the overexpression of p-AKT caused by the negative feedback loop of everolimus and had an enhanced effect on inhibition of mTOR signaling, thus providing a rationale for this synergistic effect. Furthermore, combination treatment was also more effective than treatment with either agent alone for inhibiting the growth of DLBCL xenografts. Our study provides preclinical evidence and a theoretical basis for combination therapy with rituximab and everolimus in DLBCL.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino/farmacología , Antineoplásicos/farmacología , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Sirolimus/análogos & derivados , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Apoptosis , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Everolimus , Humanos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Ratones , Ratones Desnudos , Rituximab , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 21(6): 1623-6, 2013 Dec.
Artículo en Chino | MEDLINE | ID: mdl-24370060

RESUMEN

Many studies show that as a transcription factor, B lymphocyte-induced maturation protein 1 (Blimp 1) is the master regulator of plasma-cell differentiation. The abnormality of Blimp 1 plays an important part in the genesis and development of lymphoma. This review introduces and summarizes Blimp 1's protein structure and functions, its role in B cell differentiation, its main target genes and the mechanism of its transcriptional repressor activity. Besides, the relationship between Blimp 1 gene mutation or Blimp 1 protein expression reduction and the development of DLBCL is preliminary summaried.


Asunto(s)
Antígeno de Maduración de Linfocitos B , Linfoma de Células B Grandes Difuso , Proteínas Represoras/metabolismo , Antígeno de Maduración de Linfocitos B/genética , Linfocitos B , Diferenciación Celular , Humanos , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Factores de Transcripción
8.
Ann Hematol ; 92(10): 1351-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23636313

RESUMEN

Diffuse large B cell lymphoma (DLBCL) represents the most common subtype of non-Hodgkin lymphoma and accounts for approximately 30% of newly diagnosed lymphoid neoplasms in Western countries, and 40-50% in China. A better understanding of the biology of DLBCL is needed for the development of potential therapeutic agents that target specific intracellular pathways. In this study, expression of the important components of the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway and their clinical significance were investigated in 73 DLBCL cases. The effect of rituximab alone or combined with the PI3K/AKT/mTOR pathway inhibitor rapamycin was further evaluated in the DLBCL cell lines. A total of 73 patients were identified, including 45 men and 28 women aged 18 to 78 years (median age 50 years). Of these patients, p-AKT was positive in 40 cases (54.8%), p-p70S6K in 34 cases (46.6%), and p-4E-BP1 in 33 cases (45.2%). Activation of the PI3K/AKT/mTOR pathway was related to poor disease outcome in DLBCL patients treated with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) but not in those treated with rituximab-CHOP. Rituximab combined with rapamycin synergically downregulated the PI3K/AKT/mTOR signaling pathway. Western blot analysis revealed a baseline activation status of the PI3K/AKT/mTOR pathway in DLBCL cell lines, with high levels of p-AKT, p-mTOR, in addition to downstream molecules p-p70S6K and p-4E-BP1. The results indicate that the PI3K/AKT/mTOR pathway is a potentially important signaling route and an unfavorable prognostic factor for DLBCL. Patients with PI3K/AKT/mTOR activation experience a more rapidly deteriorating clinical course with poor treatment response and decreased survival time. Addition of rituximab could downregulate PI3K/AKT/mTOR activation, reversing its negative effect on chemotherapy-treated patients. In addition, our results indicate that the combination of rituximab and inhibition of the activated PI3K/AKT/mTOR pathway could be a promising target for DLBCL therapeutic intervention in the future.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino/uso terapéutico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Adulto , Anciano , Western Blotting , Sinergismo Farmacológico , Femenino , Humanos , Inmunohistoquímica , Linfoma de Células B Grandes Difuso/genética , Masculino , Persona de Mediana Edad , Fosfatidilinositol 3-Quinasa/genética , Proteínas Proto-Oncogénicas c-akt/genética , Rituximab , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sirolimus/uso terapéutico , Serina-Treonina Quinasas TOR/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA