RESUMEN
Understanding the neural basis of infant social behaviors is crucial for elucidating the mechanisms of early social and emotional development. In this work, we report a specific population of somatostatin-expressing neurons in the zona incerta (ZISST) of preweaning mice that responds dynamically to social interactions, particularly those with their mother. Bidirectional neural activity manipulations in pups revealed that widespread connectivity of preweaning ZISST neurons to sensory, emotional, and cognitive brain centers mediates two key adaptive functions associated with maternal presence: the reduction of behavior distress and the facilitation of learning. These findings reveal a population of neurons in the infant mouse brain that coordinate the positive effects of the relationship with the mother on an infant's behavior and physiology.
Asunto(s)
Neuronas , Conducta Social , Interacción Social , Somatostatina , Zona Incerta , Animales , Femenino , Masculino , Ratones , Emociones , Aprendizaje , Conducta Materna , Neuronas/metabolismo , Neuronas/fisiología , Somatostatina/metabolismo , Zona Incerta/metabolismo , Zona Incerta/fisiologíaRESUMEN
Paradoxically, glucose, the primary driver of satiety, activates a small population of anorexigenic pro-opiomelanocortin (POMC) neurons. Here, we show that lactate levels in the circulation and in the cerebrospinal fluid are elevated in the fed state and the addition of lactate to glucose activates the majority of POMC neurons while increasing cytosolic NADH generation, mitochondrial respiration, and extracellular pyruvate levels. Inhibition of lactate dehydrogenases diminishes mitochondrial respiration, NADH production, and POMC neuronal activity. However, inhibition of the mitochondrial pyruvate carrier has no effect. POMC-specific downregulation of Ucp2 (Ucp2PomcKO), a molecule regulated by fatty acid metabolism and shown to play a role as transporter in the malate-aspartate shuttle, abolishes lactate- and glucose-sensing of POMC neurons. Ucp2PomcKO mice have impaired glucose metabolism and are prone to obesity on a high-fat diet. Altogether, our data show that lactate through redox signaling and blocking mitochondrial glucose utilization activates POMC neurons to regulate feeding and glucose metabolism.
Asunto(s)
NAD , Proopiomelanocortina , Ratones , Animales , Proopiomelanocortina/metabolismo , NAD/metabolismo , Glucosa/metabolismo , Neuronas/metabolismo , Lactatos/metabolismo , Hipotálamo/metabolismo , Proteína Desacopladora 2/metabolismoRESUMEN
The TET family of dioxygenases promote DNA demethylation by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine (5hmC). Hypothalamic agouti-related peptide-expressing (AGRP-expressing) neurons play an essential role in driving feeding, while also modulating nonfeeding behaviors. Besides AGRP, these neurons produce neuropeptide Y (NPY) and the neurotransmitter GABA, which act in concert to stimulate food intake and decrease energy expenditure. Notably, AGRP, NPY, and GABA can also elicit anxiolytic effects. Here, we report that in adult mouse AGRP neurons, CRISPR-mediated genetic ablation of Tet3, not previously known to be involved in central control of appetite and metabolism, induced hyperphagia, obesity, and diabetes, in addition to a reduction of stress-like behaviors. TET3 deficiency activated AGRP neurons, simultaneously upregulated the expression of Agrp, Npy, and the vesicular GABA transporter Slc32a1, and impeded leptin signaling. In particular, we uncovered a dynamic association of TET3 with the Agrp promoter in response to leptin signaling, which induced 5hmC modification that was associated with a chromatin-modifying complex leading to transcription inhibition, and this regulation occurred in both the mouse models and human cells. Our results unmasked TET3 as a critical central regulator of appetite and energy metabolism and revealed its unexpected dual role in the control of feeding and other complex behaviors through AGRP neurons.
Asunto(s)
Ansiolíticos , Dioxigenasas , 5-Metilcitosina/metabolismo , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Animales , Ansiolíticos/farmacología , Cromatina/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Humanos , Hipotálamo/metabolismo , Leptina/metabolismo , Ratones , Neuronas/metabolismo , Neuropéptido Y/metabolismo , Ácido gamma-Aminobutírico/genética , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/farmacologíaRESUMEN
Dysregulation of long interspersed nuclear element 1 (LINE-1, L1), a dominant class of transposable elements in the human genome, has been linked to neurodegenerative diseases, but whether elevated L1 expression is sufficient to cause neurodegeneration has not been directly tested. Here, we show that the cerebellar expression of L1 is significantly elevated in ataxia telangiectasia patients and strongly anti-correlated with the expression of epigenetic silencers. To examine the role of L1 in the disease etiology, we developed an approach for direct targeting of the L1 promoter for overexpression in mice. We demonstrated that L1 activation in the cerebellum led to Purkinje cell dysfunctions and degeneration and was sufficient to cause ataxia. Treatment with a nucleoside reverse transcriptase inhibitor blunted ataxia progression by reducing DNA damage, attenuating gliosis, and reversing deficits of molecular regulators for calcium homeostasis in Purkinje cells. Our study provides the first direct evidence that L1 activation can drive neurodegeneration.
Asunto(s)
Elementos Transponibles de ADN , Inhibidores de la Transcriptasa Inversa , Animales , Humanos , Ratones , Ataxia/metabolismo , Calcio/metabolismo , Cerebelo/metabolismo , Nucleósidos/metabolismo , Células de Purkinje/fisiología , Inhibidores de la Transcriptasa Inversa/metabolismo , Elementos de Nucleótido Esparcido LargoRESUMEN
The ventromedial hypothalamus (VMH) is known to regulate body weight and counterregulatory response. However, how VMH neurons regulate lipid metabolism and energy balance remains unknown. O-linked ß-d-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation), catalyzed by O-GlcNAc transferase (OGT), is considered a cellular sensor of nutrients and hormones. Here, we report that genetic ablation of OGT in VMH neurons inhibits neuronal excitability. Mice with VMH neuron-specific OGT deletion show rapid weight gain, increased adiposity, and reduced energy expenditure, without significant changes in food intake or physical activity. The obesity phenotype is associated with adipocyte hypertrophy and reduced lipolysis of white adipose tissues. In addition, OGT deletion in VMH neurons down-regulates the sympathetic activity and impairs the sympathetic innervation of white adipose tissues. These findings identify OGT in the VMH as a homeostatic set point that controls body weight and underscore the importance of the VMH in regulating lipid metabolism through white adipose tissue-specific innervation.
Asunto(s)
Lipólisis , N-Acetilglucosaminiltransferasas , Obesidad , Tejido Adiposo/metabolismo , Animales , Peso Corporal , Hipotálamo/metabolismo , Lipólisis/genética , Ratones , Obesidad/genética , Obesidad/metabolismoRESUMEN
Hypothalamic agouti-related peptide and neuropeptide Y-expressing (AgRP) neurons have a critical role in both feeding and non-feeding behaviors of newborn, adolescent, and adult mice, suggesting their broad modulatory impact on brain functions. Here we show that constitutive impairment of AgRP neurons or their peripubertal chemogenetic inhibition resulted in both a numerical and functional reduction of neurons in the medial prefrontal cortex (mPFC) of mice. These changes were accompanied by alteration of oscillatory network activity in mPFC, impaired sensorimotor gating, and altered ambulatory behavior that could be reversed by the administration of clozapine, a non-selective dopamine receptor antagonist. The observed AgRP effects are transduced to mPFC in part via dopaminergic neurons in the ventral tegmental area and may also be conveyed by medial thalamic neurons. Our results unmasked a previously unsuspected role for hypothalamic AgRP neurons in control of neuronal pathways that regulate higher-order brain functions during development and in adulthood.
Asunto(s)
Hipotálamo , Neuropéptido Y , Animales , Ratones , Proteína Relacionada con Agouti/metabolismo , Neuronas Dopaminérgicas/metabolismo , Hipotálamo/metabolismo , Neuropéptido Y/metabolismo , Corteza Prefrontal/metabolismoRESUMEN
Phospholipid levels are influenced by peripheral metabolism. Within the central nervous system, synaptic phospholipids regulate glutamatergic transmission and cortical excitability. Whether changes in peripheral metabolism affect brain lipid levels and cortical excitability remains unknown. Here, we show that levels of lysophosphatidic acid (LPA) species in the blood and cerebrospinal fluid are elevated after overnight fasting and lead to higher cortical excitability. LPA-related cortical excitability increases fasting-induced hyperphagia, and is decreased following inhibition of LPA synthesis. Mice expressing a human mutation (Prg-1R346T) leading to higher synaptic lipid-mediated cortical excitability display increased fasting-induced hyperphagia. Accordingly, human subjects with this mutation have higher body mass index and prevalence of type 2 diabetes. We further show that the effects of LPA following fasting are under the control of hypothalamic agouti-related peptide (AgRP) neurons. Depletion of AgRP-expressing cells in adult mice decreases fasting-induced elevation of circulating LPAs, as well as cortical excitability, while blunting hyperphagia. These findings reveal a direct influence of circulating LPAs under the control of hypothalamic AgRP neurons on cortical excitability, unmasking an alternative non-neuronal route by which the hypothalamus can exert a robust impact on the cortex and thereby affect food intake.
Asunto(s)
Diabetes Mellitus Tipo 2 , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Conducta Alimentaria/fisiología , Humanos , Hiperfagia/metabolismo , Lisofosfolípidos/metabolismo , Lisofosfolípidos/farmacología , Ratones , Neuronas/metabolismo , Sinapsis/metabolismoRESUMEN
BACKGROUND: Estriol (E3) is a steroid hormone formed only during pregnancy in primates including humans. Although E3 is synthesized at large amounts through a complex pathway involving the fetus and placenta, it is not required for the maintenance of pregnancy and has classically been considered virtually inactive due to associated very weak canonical estrogen signaling. However, estrogen exposure during pregnancy may have an effect on organs both within and outside the reproductive system, and compounds with binding affinity for estrogen receptors weaker than E3 have been found to impact reproductive organs and the brain. Here, we explore potential effects of E3 on fetal development using mouse as a model system. RESULTS: We administered E3 to pregnant mice, exposing the fetus to E3. Adult females exposed to E3 in utero (E3-mice) had increased fertility and superior pregnancy outcomes. Female and male E3-mice showed decreased anxiety and increased exploratory behavior. The expression levels and DNA methylation patterns of multiple genes in the uteri and brains of E3-mice were distinct from controls. E3 promoted complexing of estrogen receptors with several DNA/histone modifiers and their binding to target genes. E3 functions by driving epigenetic change, mediated through epigenetic modifier interactions with estrogen receptors rather than through canonical nuclear transcriptional activation. CONCLUSIONS: We identify an unexpected functional role for E3 in fetal reproductive system and brain. We further identify a novel mechanism of estrogen action, through recruitment of epigenetic modifiers to estrogen receptors and their target genes, which is not correlated with the traditional view of estrogen potency.
Asunto(s)
Estrógenos , Receptores de Estrógenos , Animales , Encéfalo/metabolismo , Epigénesis Genética , Estriol , Estrógenos/genética , Estrógenos/metabolismo , Femenino , Feto/metabolismo , Masculino , Ratones , Embarazo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , EsteroidesRESUMEN
Hypothalamic astrocytes play pivotal roles in both nutrient sensing and the modulation of synaptic plasticity of hypothalamic neuronal circuits in control of feeding and systemic glucose and energy metabolism. Here, we show the relevance of astrocytic fatty acid (FA) homeostasis under the opposing control of angiopoietin-like 4 (ANGPTL-4) and peroxisome proliferatoractivated receptor gamma (PPARγ) in the cellular adaptations of hypothalamic astrocytes and neurons to the changing metabolic milieu. We observed that increased availability of FA in astrocytes induced by cell- and time-selective knockdown of Angptl4 protected against diet-induced obesity, while cell- and time-selective knockdown of Angptl4-regulated Pparγ lead to elevated susceptibility to obesity. Overall, our results unravel a previously unidentified role for astrocytic FA metabolism in central control of body weight and glucose homeostasis.
RESUMEN
Hypothalamic feeding circuits have been identified as having innate synaptic plasticity, mediating adaption to the changing metabolic milieu by controlling responses to feeding and obesity. However, less is known about the regulatory principles underlying the dynamic changes in agouti-related protein (AgRP) perikarya, a region crucial for gating of neural excitation and, hence, feeding. Here we show that AgRP neurons activated by food deprivation, ghrelin administration, or chemogenetics decreased their own inhibitory tone while triggering mitochondrial adaptations in neighboring astrocytes. We found that it was the inhibitory neurotransmitter GABA released by AgRP neurons that evoked this astrocytic response; this in turn resulted in increased glial ensheetment of AgRP perikarya by glial processes and increased excitability of AgRP neurons. We also identified astrocyte-derived prostaglandin E2, which directly activated - via EP2 receptors - AgRP neurons. Taken together, these observations unmasked a feed-forward, self-exciting loop in AgRP neuronal control mediated by astrocytes, a mechanism directly relevant for hunger, feeding, and overfeeding.
Asunto(s)
Proteína Relacionada con Agouti , Astrocitos/metabolismo , Hambre , Hipotálamo/metabolismo , Plasticidad Neuronal , Neuronas/metabolismo , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Animales , Masculino , Ratones , Ratones Transgénicos , Subtipo EP2 de Receptores de Prostaglandina E/metabolismoRESUMEN
The hypothalamic orexigenic Agouti-related peptide (AgRP)-expressing neurons are crucial for the regulation of whole-body energy homeostasis. Here, we show that fasting-induced AgRP neuronal activation is associated with dynamin-related peptide 1 (DRP1)-mediated mitochondrial fission and mitochondrial fatty acid utilization in AgRP neurons. In line with this, mice lacking Dnm1l in adult AgRP neurons (Drp1 cKO) show decreased fasting- or ghrelin-induced AgRP neuronal activity and feeding and exhibited a significant decrease in body weight, fat mass, and feeding accompanied by a significant increase in energy expenditure. In support of the role for mitochondrial fission and fatty acids oxidation, Drp1 cKO mice showed attenuated palmitic acid-induced mitochondrial respiration. Altogether, our data revealed that mitochondrial dynamics and fatty acids oxidation in hypothalamic AgRP neurons is a critical mechanism for AgRP neuronal function and body-weight regulation.
Asunto(s)
Proteína Relacionada con Agouti/genética , Peso Corporal/fisiología , Dinaminas/genética , Metabolismo Energético , Ayuno/fisiología , Conducta Alimentaria/fisiología , Neuronas/metabolismo , Proteína Relacionada con Agouti/metabolismo , Animales , Dinaminas/metabolismo , Femenino , Masculino , RatonesRESUMEN
Major depressive disorder is associated with weight loss and decreased appetite; however, the signaling that connects these conditions is unclear. Here, we show that MC4R signaling in the dorsal raphe nucleus (DRN) affects feeding, anxiety, and depression. DRN infusion of α-MSH decreases DRN neuronal activation and feeding. DRN MC4R is expressed in GABAergic PRCP-producing neurons. DRN selective knockdown of PRCP (PrcpDRNKD), an enzyme inactivating α-MSH, decreases feeding and DRN neuronal activation. Interestingly, PrcpDRNKD mice present lower DRN serotonin levels and depressive-like behavior. Similarly, PRCP-ablated MC4R mice (PrcpMC4RKO) show metabolic and behavioral phenotypes comparable to those of PrcpDRNKD mice. Selective PRCP re-expression in DRN MC4R neurons of PrcpMC4RKO mice partially reverses feeding, while fully restoring mood behaviors. Chemogenetic inhibition of DRN MC4R neurons induces anxiety, depression, and reduced feeding, whereas chemogenetic activation reverses these effects. Our results indicate that MC4R signaling in DRN plays a role in feeding, anxiety, and depression.
Asunto(s)
Ansiedad/metabolismo , Depresión/metabolismo , Núcleo Dorsal del Rafe/metabolismo , Conducta Alimentaria , Receptor de Melanocortina Tipo 4/metabolismo , Transducción de Señal , Animales , Ansiedad/complicaciones , Conducta Animal , Depresión/complicaciones , Núcleo Dorsal del Rafe/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Melanocortinas/metabolismo , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Serotonina/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , alfa-MSH/farmacologíaRESUMEN
The brain has evolved in an environment where food sources are scarce, and foraging for food is one of the major challenges for survival of the individual and species. Basic and clinical studies show that obesity or overnutrition leads to overwhelming changes in the brain in animals and humans. However, the exact mechanisms underlying the consequences of excessive energy intake are not well understood. Neurons expressing the neuropeptide hypocretin/orexin (Hcrt) in the lateral/perifonical hypothalamus (LH) are critical for homeostatic regulation, reward seeking, stress response, and cognitive functions. In this study, we examined adaptations in Hcrt cells regulating behavioral responses to salient stimuli in diet-induced obese mice. Our results demonstrated changes in primary cilia, synaptic transmission and plasticity, cellular responses to neurotransmitters necessary for reward seeking, and stress responses in Hcrt neurons from obese mice. Activities of neuronal networks in the LH and hippocampus were impaired as a result of decreased hypocretinergic function. The weakened Hcrt system decreased reward seeking while altering responses to acute stress (stress-coping strategy), which were reversed by selectively activating Hcrt cells with chemogenetics. Taken together, our data suggest that a deficiency in Hcrt signaling may be a common cause of behavioral changes (such as lowered arousal, weakened reward seeking, and altered stress response) in obese animals.
Asunto(s)
Conducta Alimentaria , Hipotálamo , Red Nerviosa , Neuronas , Obesidad , Orexinas , Animales , Hipotálamo/metabolismo , Hipotálamo/patología , Hipotálamo/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Red Nerviosa/metabolismo , Red Nerviosa/patología , Red Nerviosa/fisiopatología , Neuronas/metabolismo , Neuronas/patología , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Obesidad/fisiopatología , Orexinas/genética , Orexinas/metabolismo , Estrés Psicológico/genética , Estrés Psicológico/metabolismo , Estrés Psicológico/patología , Estrés Psicológico/fisiopatologíaRESUMEN
OBJECTIVE: Dopamine neurons in the Substantia nigra (SN) play crucial roles in control of voluntary movement. Extensive degeneration of this neuronal population is the cause of Parkinson's disease (PD). Many factors have been linked to SN DA neuronal survival, including neuronal pacemaker activity (responsible for maintaining basal firing and DA tone) and mitochondrial function. Dln-101, a naturally occurring splice variant of the human ghrelin gene, targets the ghrelin receptor (GHSR) present in the SN DA cells. Ghrelin activation of GHSR has been shown to protect SN DA neurons against 1-methyl-4-phenyl-1,2,5,6 tetrahydropyridine (MPTP) treatment. We decided to compare the actions of Dln-101 with ghrelin and identify the mechanisms associated with neuronal survival. METHODS: Histologial, biochemical, and behavioral parameters were used to evaluate neuroprotection. Inflammation and redox balance of SN DA cells were evaluated using histologial and real-time PCR analysis. Designer Receptors Exclusively Activated by Designer Drugs (DREADD) technology was used to modulate SN DA neuron electrical activity and associated survival. Mitochondrial dynamics in SN DA cells was evaluated using electron microscopy data. RESULTS: Here, we report that the human isoform displays an equivalent neuroprotective factor. However, while exogenous administration of mouse ghrelin electrically activates SN DA neurons increasing dopamine output, as well as locomotion, the human isoform significantly suppressed dopamine output, with an associated decrease in animal motor behavior. Investigating the mechanisms by which GHSR mediates neuroprotection, we found that dopamine cell-selective control of electrical activity is neither sufficient nor necessary to promote SN DA neuron survival, including that associated with GHSR activation. We found that Dln101 pre-treatment diminished MPTP-induced mitochondrial aberrations in SN DA neurons and that the effect of Dln101 to protect dopamine cells was dependent on mitofusin 2, a protein involved in the process of mitochondrial fusion and tethering of the mitochondria to the endoplasmic reticulum. CONCLUSIONS: Taken together, these observations unmasked a complex role of GHSR in dopamine neuronal protection independent on electric activity of these cells and revealed a crucial role for mitochondrial dynamics in some aspects of this process.
Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Ghrelina/química , Intoxicación por MPTP/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fragmentos de Péptidos/farmacología , Sustancia Negra/efectos de los fármacos , Potenciales de Acción , Animales , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/fisiología , Ratones , Fármacos Neuroprotectores/uso terapéutico , Fragmentos de Péptidos/uso terapéutico , Receptores de Ghrelina/metabolismo , Sustancia Negra/citologíaRESUMEN
Despite the known causality of copy-number variations (CNVs) to human neurodevelopmental disorders, the mechanisms behind each gene's contribution to the constellation of neural phenotypes remain elusive. Here, we investigated the 7q11.23 CNV, whose hemideletion causes Williams syndrome (WS), and uncovered that mitochondrial dysfunction participates in WS pathogenesis. Dysfunction is facilitated in part by the 7q11.23 protein DNAJC30, which interacts with mitochondrial ATP-synthase machinery. Removal of Dnajc30 in mice resulted in hypofunctional mitochondria, diminished morphological features of neocortical pyramidal neurons, and altered behaviors reminiscent of WS. The mitochondrial features are consistent with our observations of decreased integrity of oxidative phosphorylation supercomplexes and ATP-synthase dimers in WS. Thus, we identify DNAJC30 as an auxiliary component of ATP-synthase machinery and reveal mitochondrial maladies as underlying certain defects in brain development and function associated with WS.
Asunto(s)
Complejos de ATP Sintetasa/metabolismo , Encéfalo/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Mitocondrias/metabolismo , Síndrome de Williams/genética , Animales , Encéfalo/crecimiento & desarrollo , Células Cultivadas , Femenino , Células HEK293 , Proteínas del Choque Térmico HSP40/genética , Humanos , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación OxidativaRESUMEN
The gut is now recognized as a major regulator of motivational and emotional states. However, the relevant gut-brain neuronal circuitry remains unknown. We show that optical activation of gut-innervating vagal sensory neurons recapitulates the hallmark effects of stimulating brain reward neurons. Specifically, right, but not left, vagal sensory ganglion activation sustained self-stimulation behavior, conditioned both flavor and place preferences, and induced dopamine release from Substantia nigra. Cell-specific transneuronal tracing revealed asymmetric ascending pathways of vagal origin throughout the CNS. In particular, transneuronal labeling identified the glutamatergic neurons of the dorsolateral parabrachial region as the obligatory relay linking the right vagal sensory ganglion to dopamine cells in Substantia nigra. Consistently, optical activation of parabrachio-nigral projections replicated the rewarding effects of right vagus excitation. Our findings establish the vagal gut-to-brain axis as an integral component of the neuronal reward pathway. They also suggest novel vagal stimulation approaches to affective disorders.
Asunto(s)
Intestinos/fisiología , Recompensa , Sustancia Negra/fisiología , Nervio Vago/fisiología , Vías Aferentes/metabolismo , Vías Aferentes/fisiología , Animales , Dopamina/metabolismo , Neuronas Dopaminérgicas/fisiología , Ácido Glutámico/metabolismo , Intestinos/inervación , Masculino , Ratones , Ratones Endogámicos C57BL , OptogenéticaRESUMEN
Endometriosis is an estrogen-dependent inflammatory disorder among reproductive-aged women associated with pelvic pain, anxiety, and depression. Pain is characterized by central sensitization; however, it is not clear if endometriosis leads to increased pain perception or if women with the disease are more sensitive to pain, increasing the detection of endometriosis. Endometriosis was induced in mice and changes in behavior including pain perception, brain electrophysiology, and gene expression were characterized. Behavioral tests revealed that mice with endometriosis were more depressed, anxious and sensitive to pain compared to sham controls. Microarray analyses confirmed by qPCR identified differential gene expression in several regions of brain in mice with endometriosis. In these mice, genes such as Gpr88, Glra3 in insula, Chrnb4, Npas4 in the hippocampus, and Lcn2 in the amygdala were upregulated while Lct, Serpina3n (insula), and Nptx2 (amygdala) were downregulated. These genes are involved in anxiety, locomotion, and pain. Patch clamp recordings in the amygdala were altered in endometriosis mice demonstrating an effect of endometriosis on brain electrophysiology. Endometriosis induced pain sensitization, anxiety, and depression by modulating brain gene expression and electrophysiology; the effect of endometriosis on the brain may underlie pain sensitization and mood disorders reported in women with the disease.