Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
1.
Food Chem ; 463(Pt 2): 141270, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39293380

RESUMEN

The effects of phenolic acid grafted-chitosan hydrocolloids (CS-g-GA/FA) on aldehyde contents from lipid oxidation in golden pompano fillets during pan-frying was investigated with an established high-performance liquid chromatography-mass spectrum method. Results indicated that pan-frying induced profound lipid oxidation and aldehydes generation with propanal, hexanal, nonanal, trans, trans-2,4-decadienal, and 4-hydroxy-2-nonenal as the abundant species. CS-g-FA and CS-g-GA effectively decreased their contents by 23.74-27.42 %, 61.69-67.42 %, 41.83-53.91 %, 29.91-48.79 %, and 61.57-65.39 % after 3 min. Most aldehyde contents decreased with the extension of pan-frying time due to the volatilization and reaction. In terms of substrate depletion, CS-g-phenolic acids effectively inhibited unsaturated fatty acids oxidation due to their decent antioxidant activity than CS. The significant lower retention rates of aldehydes in the CS-g-phenolic acids groups compared with control in chemical mode confirmed the carbonyl ammonia condensation. These results suggested that CS-g-phenolic acids serve as novel coating to reduce hazardous compounds during aquatic products thermal processing.

2.
Plant Physiol ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39116186

RESUMEN

The root cap secretes mucilage and sheds border cells (border-like cells, BLCs) in Arabidopsis (Arabidopsis thaliana). These mucilage and root cap-derived cells form a defensive barrier against soil pathogens. BEARSKIN1 (BRN1) and BRN2 are 2 homologous NAM, ATAF1/2, and CUC2 (NAC) family transcription factors of Arabidopsis, and mucilage secretion is inhibited in the brn1/2 double mutant. BRN1 and BRN2 are also involved in the expression of a pectin-digesting enzyme, POLYGALACTURONASE (RCPG), that facilitates BLC shedding. To further explore the connection between mucilage secretion and BLC shedding, we examined mucilage production in Arabidopsis lines displaying altered BLC detachment. Inactivation of BRN2 blocked mucilage synthesis and secretion, while inactivation of BRN1 and RCPG did not. Interestingly, RCPG sorted into mucilage-carrying vesicles budding from the Golgi and inhibited mucilage secretion in brn2-delayed BLC detachment. The root cap of a germinating seedling is initially covered with a cuticle, which is replaced by mucilage from BLCs as the seedling begins to shed these cells. Ectopic expression of RCPG in germinating seedlings caused early BLC formation and accelerated the cuticle-to-mucilage transition, indicating that RCPG expression and mucilage secretion are co-regulated. Furthermore, brn2 roots exhibited slower growth and increased cell death when subjected to salt or osmotic stress. Our research suggests that BRN2-mediated mucilage secretion contributes to BLC release to build an extracellular defense zone surrounding the root cap.

3.
Geriatrics (Basel) ; 9(4)2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39195134

RESUMEN

This study investigated the effects of oral nutritional supplements (ONSs) along with dietary counseling (DC) in community-dwelling older adults at risk of malnutrition. In this randomized controlled trial, 196 older adults who were at risk of malnutrition, as identified by the Malnutrition Universal Screening Tool (MUST) were randomly assigned to receive ONSs twice daily with DC (intervention) or DC-only (control) for 60 days. Primary outcome was change in body weight from baseline to day 60. Nutritional status, energy, and macronutrient intakes were measured. A significant larger weight gain was observed in the intervention compared to the control from baseline to day 60 (1.50 ± 0.22 kg, p < 0.0001). The intervention group also showed a significantly greater increase in weight at day 30 (p < 0.0001). Intakes of energy and macronutrients were significantly higher in the intervention group compared to the control group at both days 30 and 60 (all p < 0.0001). The odds of achieving better nutritional status were significantly higher in the intervention group than in the control group (OR:3.9, 95% CI: 1.9, 8.2, p = 0.0001). ONS supplementation combined with DC significantly improved body weight and nutritional outcomes in community-dwelling older adults at risk of malnutrition.

4.
Food Chem ; 460(Pt 2): 140536, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39089037

RESUMEN

This study explored the relationship between the interfacial behavior of lactoferrin-(-)-epigallocatechin-3-gallate covalent complex (LF-EGCG) and the stability of high internal phase Pickering emulsions (HIPPEs). The formation of covalent bond between lactoferrin and polyphenol was verified by the increase in molecular weight. In LF-EGCG group, the surface hydrophobicity, interfacial pressure, and adsorption rate were decreased, while the molecular flexibility, interfacial film viscoelasticity, and interfacial protein content were increased. Meanwhile, LF-EGCG HIPPE possessed reduced droplet size, increased ζ-potential and stability. Rheology showed the viscoelasticity, structural recovery and gel strength of LF-EGCG HIPPE were improved, giving HIPPE inks better 3D printing integrity and clarity. Moreover, the free fatty acids (FFA) release of LF-EGCG HIPPE (62.6%) was higher than that of the oil group (50.1%). Therefore, covalent treatment effectively improved the interfacial properties of protein particles and the stability of HIPPEs. The macroscopic properties of HIPPEs were positively regulated by the interfacial properties of protein particles. The result suggested that the stability of emulsions can be improved by regulating the interfacial properties of particles.


Asunto(s)
Catequina , Emulsiones , Lactoferrina , Tamaño de la Partícula , Reología , Catequina/química , Catequina/análogos & derivados , Emulsiones/química , Lactoferrina/química , Interacciones Hidrofóbicas e Hidrofílicas , Viscosidad , Adsorción
5.
Int J Biol Macromol ; 277(Pt 2): 134171, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39067727

RESUMEN

In this study, we designed the noncovalent binding of sodium caseinate (SC) to tannic acid (TA) to stabilize high internal phase emulsions (HIPEs) used as fish oil delivery systems. Hydrogen bonding was the dominant binding force, followed by weak hydrophobic interaction and weak van der Waals forces, as demonstrated by FTIR, fluorescence spectroscopy, and molecular docking experiments, with a binding constant of 3.25 × 106, a binding site of 1.2, and a static quenching of the binding. Increasing SC:TA from SC to 2:1 decreased the particle size from 107.37 ± 10.66 to 76.07 ± 2.77 nm and the zeta potential from -6.99 ± 2.71 to -22 ± 2.42 mV. TA increased the interfacial tension of SC, decreased the surface hydrophobicity from 1.3 × 104 to 1.6 × 103 and improved the oxidation resistance of SC. The particle size of high internal phase emulsions stabilized by complexes with different mass ratios (SC:TA from 1:0 to 2:1) increased from 4.9 ± 0.02 to 12.9 µm, the potential increased from -32.37 ± 2.7 to -35.07 ± 2.58 mV, and the instability index decreased from 0.75 to 0.02. Thicker interfacial layers could be observed by laser confocal microscopy, and an increase in the storage modulus indicated a formation of a stronger gel network. SC:TA of 1:0 showed emulsion breakage after 14 d of storage at room temperature. SC:TA of 2:1 showed the lowest degree of oil-water separation after freeze-thaw treatment. Especially, the most stable high endo-phase emulsion (at SC:TA of 2:1) prepared at each mass ratio was selected for further stability exploration. The emulsion particle size increased only from 15.63 ± 0.06 to 22.27 ± 0.35 µm at salt ion concentrations of 50-200 mM and to 249.33 ± 31.79 µm at 300 mM. The instability index and storage modulus of the high endo-phase emulsions increased gradually with increasing salt ion concentrations. At different heating temperatures (55-85 °C), the instability index of the high internal phase emulsion gradually decreased and the storage modulus gradually increased. Meanwhile, at 50 °C for 15 d of accelerated oxidation, the content of hydroperoxide decreased from 53.32 ± 0.18 to 37.48 ± 0.77 nmol/g, about 29.7 %, and the thiobarbituric acid value decreased from 1.06 × 103 to 0.8 × 103, about 24.5 %, in the high endo-phase emulsions prepared by 2:1 SC:TA compared to the fish oils, and the SC-stabilized high endo-phase only emulsion broke at the sixth day of oxidation. From the above findings, it was concluded that the high internal phase emulsion prepared with SC:TA of 2:1 can be used as a good delivery system for fish oil.


Asunto(s)
Caseínas , Emulsiones , Aceites de Pescado , Taninos , Emulsiones/química , Taninos/química , Caseínas/química , Aceites de Pescado/química , Tamaño de la Partícula , Interacciones Hidrofóbicas e Hidrofílicas , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular
6.
Adv Sci (Weinh) ; : e2402819, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958507

RESUMEN

2D van der Waals (vdW) magnets have recently emerged as a promising material system for spintronic device innovations due to their intriguing phenomena in the reduced dimension and simple integration of magnetic heterostructures without the restriction of lattice matching. However, it is still challenging to realize Curie temperature far above room temperature and controllable magnetic anisotropy for spintronics application in 2D vdW magnetic materials. In this work, the pressure-tuned dome-like ferromagnetic-paramagnetic phase diagram in an iron-based 2D layered ferromagnet Fe3GaTe2 is reported. Continuously tunable magnetic anisotropy from out-of-plane to in-plane direction is achieved via the application of pressure. Such behavior is attributed to the competition between intralayer and interlayer exchange interactions and enhanced DOS near the Fermi level. The study presents the prominent properties of pressure-engineered 2D ferromagnetic materials, which can be used in the next-generation spintronic devices.

7.
J Agric Food Chem ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856739

RESUMEN

Astaxanthin (AST), mainly found in algae and shrimp, is a liposoluble ketone carotenoid with a wide range of biological activities and is commonly used in healthcare interventions and cosmetics. AST has a long chain of conjugated double bonds with hydroxyl and ketone groups at both ends, enabling it to form astaxanthin esters (AST-Es) through esterification with fatty acids. The fatty acid structure of AST plays a key role in the stability, antioxidant activity, and bioavailability of AST-Es. Antarctic krill (Euphausia superba) and blood-red algae Haematococcus Pluvialis (H pluvialis)-derived AST-Es exhibit strong antioxidant activity and numerous biological activities, such as improving insulin resistance, preventing Parkinson's disease, regulating intestinal flora, and alleviating inflammatory bowel disease. This review discusses the significance of AST-Es as functional food ingredients, highlighting their nutritional value, phytochemical structure, biological activities, and potential applications in the food industry.

8.
Sci Total Environ ; 937: 173422, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38796019

RESUMEN

Tamarix hispida is highly tolerant to salt, drought and heavy metal stress and is a potential material for the remediation of cadmium (Cd)-contaminated soil under harsh conditions. In this study, T. hispida growth and chlorophyll content decreased, whereas flavonoid and carotenoid contents increased under long-term Cd stress (25 d). The aboveground components of T. hispida were collected for RNA-seq to investigate the mechanism of Cd accumulation. GO and KEGG enrichment analyses revealed that the differentially expressed genes (DEGs) were significantly enriched in plant hormone-related pathways. Exogenous hormone treatment and determination of Cd2+ levels showed that ethylene (ETH) and abscisic acid (ABA) antagonists regulate Cd accumulation in T. hispida. Twenty-five transcription factors were identified as upstream regulators of hormone-related pathways. ThDRE1A, which was previously identified as an important regulatory factor, was selected for further analysis. The results indicated that ThABAH2.5 and ThACCO3.1 were direct target genes of ThDRE1A. The determination of Cd2+, ABA, and ETH levels indicated that ThDRE1A plays an important role in Cd accumulation through the antagonistic regulation of ABA and ETH. In conclusion, these results reveal the molecular mechanism underlying Cd accumulation in plants and identify candidate genes for further research.


Asunto(s)
Ácido Abscísico , Cadmio , Etilenos , Contaminantes del Suelo , Tamaricaceae , Cadmio/metabolismo , Ácido Abscísico/metabolismo , Tamaricaceae/metabolismo , Tamaricaceae/genética , Etilenos/metabolismo , Contaminantes del Suelo/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
9.
J Am Chem Soc ; 146(20): 13797-13804, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38722223

RESUMEN

Hydrides are promising candidates for achieving room-temperature superconductivity, but a formidable challenge remains in reducing the stabilization pressure below a megabar. In this study, we successfully synthesized a ternary lanthanum borohydride by introducing the nonmetallic element B into the La-H system, forming robust B-H covalent bonds that lower the pressure required to stabilize the superconducting phase. Electrical transport measurements confirm the presence of superconductivity with a critical temperature (Tc) of up to 106 K at 90 GPa, as evidenced by zero resistance and Tc shift under an external magnetic field. X-ray diffraction and transport measurements identify the superconducting compound as LaB2H8, a nonclathrate hydride, whose crystal structure remains stable at pressures as low as ∼ half megabar (59 GPa). Stabilizing superconductive stoichiometric LaB2H8 in a submegabar pressure regime marks a substantial advancement in the quest for high-Tc superconductivity in polynary hydrides, bringing us closer to the ambient pressure conditions.

10.
J Nanobiotechnology ; 22(1): 250, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750519

RESUMEN

The complexity of repairing large segment defects and eradicating residual tumor cell puts the osteosarcoma clinical management challenging. Current biomaterial design often overlooks the crucial role of precisely regulating innervation in bone regeneration. Here, we develop a Germanium Selenium (GeSe) co-doped polylactic acid (PLA) nanofiber membrane-coated tricalcium phosphate bioceramic scaffold (TCP-PLA/GeSe) that mimics the bone-periosteum structure. This biomimetic scaffold offers a dual functionality, combining piezoelectric and photothermal conversion capabilities while remaining biodegradable. When subjected to ultrasound irradiation, the US-electric stimulation of TCP-PLA/GeSe enables spatiotemporal control of neurogenic differentiation. This feature supports early innervation during bone formation, promoting early neurogenic differentiation of Schwann cells (SCs) by increasing intracellular Ca2+ and subsequently activating the PI3K-Akt and Ras signaling pathways. The biomimetic scaffold also demonstrates exceptional osteogenic differentiation potential under ultrasound irradiation. In rabbit model of large segment bone defects, the TCP-PLA/GeSe demonstrates promoted osteogenesis and nerve fibre ingrowth. The combined attributes of high photothermal conversion capacity and the sustained release of anti-tumor selenium from the TCP-PLA/GeSe enable the synergistic eradication of osteosarcoma both in vitro and in vivo. This strategy provides new insights on designing advanced biomaterials of repairing large segment bone defect and osteosarcoma.


Asunto(s)
Regeneración Ósea , Fosfatos de Calcio , Osteogénesis , Osteosarcoma , Andamios del Tejido , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Animales , Regeneración Ósea/efectos de los fármacos , Andamios del Tejido/química , Conejos , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Osteogénesis/efectos de los fármacos , Poliésteres/química , Humanos , Diferenciación Celular/efectos de los fármacos , Neoplasias Óseas/patología , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/terapia , Línea Celular Tumoral , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Células de Schwann/efectos de los fármacos , Nanofibras/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Selenio/química , Selenio/farmacología
11.
Foods ; 13(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38790731

RESUMEN

Food-borne bioactive peptides have shown promise in preventing and mitigating alcohol-induced liver injury. This study was the first to assess the novel properties of Mactra chinenesis peptides (MCPs) in mitigating acute alcoholic liver injury in mice, and further elucidated the underlying mechanisms associated with this effect. The results showed that MCPs can improve lipid metabolism by modulating the AMPK signaling pathway, decreasing fatty acid synthase activity, and increasing carnitine palmitoyltransferase 1a activity. Meanwhile, MCPs ameliorate inflammation by inhibiting the NF-κB activation, leading to reduced levels of pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-1ß). Additionally, a 16S rDNA sequencing analysis revealed that MCPs can restore the balance of gut microbiota and increase the relative abundance of beneficial bacteria. These findings suggest that supplementation of MCPs could attenuate alcohol intake-induced acute liver injury, and, thus, may be utilized as a functional dietary supplement for the successful treatment and prevention of acute liver injury.

12.
ACS Sens ; 9(4): 2134-2140, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38626725

RESUMEN

Imaging the surface charge of biomolecules such as proteins and DNA, is crucial for comprehending their structure and function. Unfortunately, current methods for label-free, sensitive, and rapid imaging of the surface charge of single DNA molecules are limited. Here, we propose a plasmonic microscopy strategy that utilizes charge-sensitive single-crystal monolayer WS2 materials to image the local charge density of a single λ-DNA molecule. Our study reveals that WS2 is a highly sensitive charge-sensitive material that can accurately measure the local charge density of λ-DNA with high spatial resolution and sensitivity. The consistency of the surface charge density values obtained from the single-crystal monolayer WS2 materials with theoretical simulations demonstrates the reliability of our approach. Our findings suggest that this class of materials has significant implications for the development of label-free, scanning-free, and rapid optical detection and charge imaging of biomolecules.


Asunto(s)
ADN , ADN/química , Compuestos de Tungsteno/química , Microscopía/métodos
13.
Nano Lett ; 24(17): 5301-5307, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38625005

RESUMEN

The accurate diagnosis of diabetic nephropathy relies on achieving ultrasensitive biosensing for biomarker detection. However, existing biosensors face challenges such as poor sensitivity, complexity, time-consuming procedures, and high assay costs. To address these limitations, we report a WS2-based plasmonic biosensor for the ultrasensitive detection of biomarker candidates in clinical human urine samples associated with diabetic nephropathy. Leveraging plasmonic-based electrochemical impedance microscopy (P-EIM) imaging, we observed a remarkable charge sensitivity in monolayer WS2 single crystals. Our biosensor exhibits an exceptionally low detection limit (0.201 ag/mL) and remarkable selectivity in detecting CC chemokine ligand 2 (CCL2) protein biomarkers, outperforming conventional techniques such as ELISA. This work represents a breakthrough in traditional protein sensors, providing a direction and materials foundation for developing ultrasensitive sensors tailored to clinical applications for biomarker sensing.


Asunto(s)
Biomarcadores , Técnicas Biosensibles , Quimiocina CCL2 , Nefropatías Diabéticas , Humanos , Nefropatías Diabéticas/orina , Nefropatías Diabéticas/diagnóstico , Técnicas Biosensibles/métodos , Quimiocina CCL2/orina , Biomarcadores/orina , Límite de Detección , Técnicas Electroquímicas/métodos
14.
ACS Appl Mater Interfaces ; 16(15): 19112-19120, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38579811

RESUMEN

Two-dimensional transition metal dichalcogenide (TMDC) heterostructure is receiving considerable attention due to its novel electronic, optoelectronic, and spintronic devices with design-oriented and functional features. However, direct design and synthesis of high-quality TMDC/MnTe heterostructures remain difficult, which severely impede further investigations of semiconductor/magnetic semiconductor devices. Herein, the synthesis of high-quality vertically stacked WS2/MnTe heterostructures is realized via a two-step chemical vapor deposition method. Raman, photoluminescence, and scanning transmission electron microscopy characterizations reveal the high-quality and atomically sharp interfaces of the WS2/MnTe heterostructure. WS2/MnTe-based van der Waals field effect transistors demonstrate high rectification behavior with rectification ratio up to 106, as well as a typical p-n electrical transport characteristic. Notably, the fabricated WS2/MnTe photodetector exhibits sensitive and broadband photoresponse ranging from UV to NIR with a maximum responsivity of 1.2 × 103 A/W, a high external quantum efficiency of 2.7 × 105%, and fast photoresponse time of ∼50 ms. Moreover, WS2/MnTe heterostructure photodetectors possess a broadband image sensing capability at room temperature, suggesting potential applications in next-generation high-performance and broadband image sensing photodetectors.

15.
Front Immunol ; 15: 1379853, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650937

RESUMEN

Introduction: Macrophages are an important component of innate immunity and involved in the immune regulation of multiple diseases. The functional diversity and plasticity make macrophages to exhibit different polarization phenotypes after different stimuli. During tumor progression, the M2-like polarized tumor-associated macrophages (TAMs) promote tumor progression by assisting immune escape, facilitating tumor cell metastasis, and switching tumor angiogenesis. Our previous studies demonstrated that functional remodeling of TAMs through engineered-modifying or gene-editing provides the potential immunotherapy for tumor. However, lack of proliferation capacity and maintained immune memory of infused macrophages restricts the application of macrophage-based therapeutic strategies in the repressive tumor immune microenvironment (TIME). Although J2 retrovirus infection enabled immortalization of bone marrow-derived macrophages (iBMDMs) and facilitated the mechanisms exploration and application, little is known about the phenotypic and functional differences among multi kinds of macrophages. Methods: HE staining was used to detect the biosafety of iBMDMs, and real-time quantitative PCR, immunofluorescence staining, and ELISA were used to detect the polarization response and expression of chemokines in iBMDMs. Flow cytometry, scratch assay, real-time quantitative PCR, and crystal violet staining were used to analyze its phagocytic function, as well as its impact on tumor cell migration, proliferation, and apoptosis. Not only that, the inhibitory effect of iBMDMs on tumor growth was detected through subcutaneous tumor loading, while the tumor tissue was paraffin sectioned and flow cytometry was used to detect its impact on the tumor microenvironment. Results: In this study, we demonstrated iBMDMs exhibited the features of rapid proliferation and long-term survival. We also compared iBMDMs with RAW264.7 cell line and mouse primary BMDMs with in vitro and in vivo experiments, indicating that the iBMDMs could undergo the same polarization response as normal macrophages with no obvious cellular morphology changes after polarization. What's more, iBMDMs owned stronger phagocytosis and pro-apoptosis functions on tumor cells. In addition, M1-polarized iBMDMs could maintain the anti-tumor phenotypes and domesticated the recruited macrophages of receptor mice, which further improved the TIME and repressed tumor growth. Discussion: iBMDMs can serve as a good object for the function and mechanism study of macrophages and the optional source of macrophage immunotherapy.


Asunto(s)
Fenotipo , Animales , Ratones , Microambiente Tumoral/inmunología , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos/inmunología , Proliferación Celular , Línea Celular Tumoral , Ratones Endogámicos C57BL , Apoptosis , Fagocitosis , Movimiento Celular/inmunología
16.
Small ; 20(33): e2312175, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38534021

RESUMEN

Ultrasensitive detection of biomarkers, particularly proteins, and microRNA, is critical for disease early diagnosis. Although surface plasmon resonance biosensors offer label-free, real-time detection, it is challenging to detect biomolecules at low concentrations that only induce a minor mass or refractive index change on the analyte molecules. Here an ultrasensitive plasmonic biosensor strategy is reported by utilizing the ferroelectric properties of Bi2O2Te as a sensitive-layer material. The polarization alteration of ferroelectric Bi2O2Te produces a significant plasmonic biosensing response, enabling the detection of charged biomolecules even at ultralow concentrations. An extraordinary ultralow detection limit of 1 fm is achieved for protein molecules and an unprecedented 0.1 fm for miRNA molecules, demonstrating exceptional specificity. The finding opens a promising avenue for the integration of 2D ferroelectric materials into plasmonic biosensors, with potential applications spanning a wide range.


Asunto(s)
Técnicas Biosensibles , Resonancia por Plasmón de Superficie , Técnicas Biosensibles/métodos , Resonancia por Plasmón de Superficie/métodos , Bismuto/química , MicroARNs/análisis
17.
Food Chem ; 447: 139029, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38513480

RESUMEN

Hydrocolloids synthesized by gallic acid (GA) and ferulic acid (FA) grafting onto chitosan (CS) were characterized, and their effects on PhIP formation in pan-fried golden pompano were investigated. Spectrograms including nuclear magnetic resonance, Fourier transform infrared spectroscopy and ultraviolet-visible confirmed that GA and FA were successfully grafted onto CS via covalent bonds, with grafting degree of 97.06 ± 2.56 mg GA/g and 93.56 ± 2.76 mg FA/g, respectively. The CS-g-GA and CS-g-FA exerted better solubility and antioxidant activities than CS. For the 8-min pan-fried golden pompano fillets, CS-g-GA and CS-g-FA (0.5 %, m/v) significantly reduced the PhIP formation by 61.71 % and 81.64 %, respectively. Chemical models revealed that CS-g-GA and CS-g-FA inhibited PhIP formation mainly by decreasing the phenylacetaldehyde contents from Maillard reaction and competing with creatinine to react with phenylacetaldehyde. Therefore, it was suggested that CS-g-phenolic acids emerge as novel coating for aquatic products during processing and inhibit heterocyclic amines generation.


Asunto(s)
Acetaldehído/análogos & derivados , Quitosano , Imidazoles , Quitosano/química , Polifenoles , Antioxidantes/química , Ácido Gálico/química
18.
Food Chem ; 447: 138981, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38518613

RESUMEN

In the current study, the preservation effect of plasma-activated water (PAW), coconut exocarp flavonoids (CF) and their combination on golden pompano fillets during refrigerated storage was investigated with emphasize on the treating sequence. PAW effectively inactivated spoilage bacteria and inhibited total volatile basic nitrogen (TVB-N) increase, while boosted the TBARS and carbonyl values. PAW+CF exerted synergistic effect on extending the period before total bacterial count and TVB-N content reaching acceptance limit than PAW or CF alone (P < 0.05). In addition, their combined treatment effectively reduced fillets discoloration and texture deterioration. Simultaneously, lipid and protein oxidation were significantly inhibited, which was comparable to CF. It was indicated that the treatment sequence of PAW and CF profoundly impact the preservation effect. Specifically, prior CF marinating followed by PAW was more effective than the opposite sequence. Thus, combination of CF followed by PAW served as promising technique for fish fillets preservation.


Asunto(s)
Cocos , Conservación de Alimentos , Animales , Conservación de Alimentos/métodos , Agua , Peces
19.
Nature ; 626(8000): 779-784, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38383626

RESUMEN

Moiré superlattices formed by twisted stacking in van der Waals materials have emerged as a new platform for exploring the physics of strongly correlated materials and other emergent phenomena1-5. However, there remains a lack of research on the mechanical properties of twisted-layer van der Waals materials, owing to a lack of suitable strategies for making three-dimensional bulk materials. Here we report the successful synthesis of a polycrystalline boron nitride bulk ceramic with high room-temperature deformability and strength. This ceramic, synthesized from an onion-like boron nitride nanoprecursor with conventional spark plasma sintering and hot-pressing sintering, consists of interlocked laminated nanoplates in which parallel laminae are stacked with varying twist angles. The compressive strain of this bulk ceramic can reach 14% before fracture, about one order of magnitude higher compared with traditional ceramics (less than 1% in general), whereas the compressive strength is about six times that of ordinary hexagonal boron nitride layered ceramics. The exceptional mechanical properties are due to a combination of the elevated intrinsic deformability of the twisted layering in the nanoplates and the three-dimensional interlocked architecture that restricts deformation from propagating across individual nanoplates. The advent of this twisted-layer boron nitride bulk ceramic opens a gate to the fabrication of highly deformable bulk ceramics.

20.
Food Chem ; 446: 138810, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38402769

RESUMEN

The effect of a high internal phase emulsion (HIPE) on three-dimensional-printed surimi gel inks was studied. Increasing the concentration of collagen peptide decreased the particle size of HIPE droplets and improved the viscoelasticity and stability. For example, when the collagen peptide concentration was 5 wt%, the viscoelasticity of the HIPE was high, as indicated by the presence of small and uniform particles, which formed a monolayer in the outer layer of the oil droplets to form stable a HIPE. A HIPE was used as the filling material to fill the surimi gel network, which reduced the porosity of the network. Surimi protein and peptides have dual emulsifying effects on the stabilization of oil. After adding the emulsion, the texture, gel properties and rheological properties of the surimi were reduced, and its printing adaptability was improved. This study provides new ideas for the production of surimi and its application in 3D printing.


Asunto(s)
Aceites de Pescado , Tinta , Emulsiones/química , Geles/química , Péptidos , Impresión Tridimensional , Colágeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...