Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Intervalo de año de publicación
1.
Biomacromolecules ; 25(4): 2136-2155, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38448083

RESUMEN

Cellulose, the most abundant polymer on Earth, has been widely utilized in its nanoform due to its excellent properties, finding applications across various scientific fields. As the demand for nanocellulose continues to rise and its ease of use becomes apparent, there has been a significant increase in research publications centered on this biomaterial. Nanocellulose, in its different forms, has shown tremendous promise as a tissue engineered scaffold for regeneration and repair. Particularly, nanocellulose-based composites and scaffolds have emerged as highly demanding materials for both soft and hard tissue engineering. Medical practitioners have traditionally relied on collagen and its analogue, gelatin, for treating tissue damage. However, the limited mechanical strength of these biopolymers restricts their direct use in various applications. This issue can be overcome by making hybrids of these biopolymers with nanocellulose. This review presents a comprehensive analysis of the recent and most relevant publications focusing on hybrid composites of collagen and gelatin with a specific emphasis on their combination with nanocellulose. While bone and skin tissue engineering represents two areas where a majority of researchers are concentrating their efforts, this review highlights the use of nanocellulose-based hybrids in these contexts.


Asunto(s)
Gelatina , Ingeniería de Tejidos , Andamios del Tejido , Materiales Biocompatibles , Colágeno
2.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37834056

RESUMEN

Recently, degradable biopolymers have become increasingly important as potential environmentally friendly biomaterials, providing a wide range of applications in various fields. Bacterial exopolysaccharides (EPSs) are biomacromolecules, which due to their unique properties have found applications in biomedicine, foodstuff, textiles, cosmetics, petroleum, pharmaceuticals, nanoelectronics, and environmental remediation. One of the important commercial polysaccharides produced on an industrial scale is xanthan. In recent years, the range of its application has expanded significantly. Bacterial cellulose (BC) is another unique EPS with a rapidly increasing range of applications. Due to the great prospects for their practical application, the development of their highly efficient production remains an important task. The present review summarizes the strategies for the cost-effective production of such important biomacromolecules as xanthan and BC and demonstrates for the first time common approaches to their efficient production and to obtaining new functional materials for a wide range of applications, including wound healing, drug delivery, tissue engineering, environmental remediation, nanoelectronics, and 3D bioprinting. In the end, we discuss present limitations of xanthan and BC production and the line of future research.


Asunto(s)
Bacterias , Celulosa , Biopolímeros , Polisacáridos Bacterianos
3.
Microorganisms ; 11(6)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37375041

RESUMEN

Bacterial exopolysaccharides (EPS) are essential natural biopolymers used in different areas including biomedicine, food, cosmetic, petroleum, and pharmaceuticals and also in environmental remediation. The interest in them is primarily due to their unique structure and properties such as biocompatibility, biodegradability, higher purity, hydrophilic nature, anti-inflammatory, antioxidant, anti-cancer, antibacterial, and immune-modulating and prebiotic activities. The present review summarizes the current research progress on bacterial EPSs including their properties, biological functions, and promising applications in the various fields of science, industry, medicine, and technology, as well as characteristics and the isolation sources of EPSs-producing bacterial strains. This review provides an overview of the latest advances in the study of such important industrial exopolysaccharides as xanthan, bacterial cellulose, and levan. Finally, current study limitations and future directions are discussed.

4.
Molecules ; 28(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36985577

RESUMEN

A soft synthesis of nanoceria with non-stoichiometric composition (33% Ce3+/67% Ce4+) named CeO2 NPs in bacterial cellulose (BC) matrix in the form of aerogel and hydrogel with controlled CeO2 NPs content was proposed. The advantage of CeO2 NPs synthesis in BC is the use of systemic antacid API-trisamine as a precursor, which did not destruct cellulose at room temperature and enabled a reduction in the duration of synthesis and the number of washes. Moreover, this method resulted in the subsequent uniform distribution of CeO2 NPs in the BC matrix due to cerium (III) nitrate sorption in the BC matrix. CeO2 NPs (0.1-50.0%) in the BC matrix had a fluorite structure with a size of 3-5 nm; the specific surface area of the composites was 233.728 m2/g. CeO2 NPs in the BC-CeO2 NPs composite demonstrated SOD-like activity in the processes of oxidation and reduction of cytochrome c (cyt c3+/cyt c2+), as well as epinephrine to inhibit its auto-oxidation in aqueous solutions by 33-63% relative to the control. In vitro experiments on rat blood showed a decrease in the MDA level and an increase in the activity of antioxidant defense enzymes-SOD by 24% and G6PDH by 2.0-2.5 times. Therefore, BC-CeO2 NPs can be proposed for wound healing as antioxidant material.


Asunto(s)
Cerio , Nanopartículas del Metal , Nanopartículas , Ratas , Animales , Antioxidantes , Nanopartículas/química , Cerio/farmacología , Cerio/química , Superóxido Dismutasa , Nanopartículas del Metal/química
5.
Polymers (Basel) ; 14(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36365662

RESUMEN

Bacterial cellulose (BC) is currently one of the most popular environmentally friendly materials with unique structural and physicochemical properties for obtaining various functional materials for a wide range of applications. In this regard, the literature reporting on bacterial nanocellulose has increased exponentially in the past decade. Currently, extensive investigations aim at promoting the manufacturing of BC-based nanocomposites with other components such as nanoparticles, polymers, and biomolecules, and that will enable to develop of a wide range of materials with advanced and novel functionalities. However, the commercial production of such materials is limited by the high cost and low yield of BC, and the lack of highly efficient industrial production technologies as well. Therefore, the present review aimed at studying the current literature data in the field of highly efficient BC production for the purpose of its further usage to obtain polymer nanocomposites. The review highlights the progress in synthesizing BC-based nanocomposites and their applications in biomedical fields, such as wound healing, drug delivery, tissue engineering. Bacterial nanocellulose-based biosensors and adsorbents were introduced herein.

6.
PLoS One ; 16(7): e0253482, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34228741

RESUMEN

Paenibacillus spp. exopolysaccharides (EPSs) have become a growing interest recently as a source of biomaterials. In this study, we characterized Paenibacillus polymyxa 2020 strain, which produces a large quantity of EPS (up to 68 g/L),and was isolated from wasp honeycombs. Here we report its complete genome sequence and full methylome analysis detected by Pacific Biosciences SMRT sequencing. Moreover, bioinformatic analysis identified a putative levan synthetic operon. SacC and sacB genes have been cloned and their products identified as glycoside hydrolase and levansucrase respectively. The Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra demonstrated that the EPS is a linear ß-(2→6)-linked fructan (levan). The structure and properties of levan polymer produced from sucrose and molasses were analyzed by FT-IR, NMR, scanning electron microscopy (SEM), high performance size exclusion chromatography (HPSEC), thermogravimetric analysis (TGA), cytotoxicity tests and showed low toxicity and high biocompatibility. Thus, P. polymyxa 2020 could be an exceptional cost-effective source for the industrial production of levan-type EPSs and to obtain functional biomaterials based on it for a broad range of applications, including bioengineering.


Asunto(s)
Paenibacillus polymyxa/metabolismo , Polisacáridos Bacterianos/genética , Clonación Molecular , Epigenoma , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Rastreo , Paenibacillus polymyxa/genética , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/aislamiento & purificación , Análisis de Secuencia de ADN , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier
7.
Nanomaterials (Basel) ; 11(3)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809076

RESUMEN

A design of new nanocomposites of bacterial cellulose (BC) and betulin diphosphate (BDP) pre-impregnated into the surface of zinc oxide nanoparticles (ZnO NPs) for the production of wound dressings is proposed. The sizes of crystalline BC and ZnO NPs (5-25%) corresponded to 5-6 nm and 10-18 nm, respectively (powder X-ray diffractometry (PXRD), Fourier-infrared (FTIR), ultraviolet (UV), atomic absorption (AAS) and photoluminescence (PL) spectroscopies). The biological activity of the wound dressings "BC-ZnO NPs-BDP" was investigated in rats using a burn wound model. Morpho-histological studies have shown that more intensive healing was observed during treatment with hydrophilic nanocomposites than the oleophilic standard (ZnO NPs-BDP oleogel; p < 0.001). Treatment by both hydrophilic and lipophilic agents led to increases in antioxidant enzyme activity (superoxide dismutase (SOD), catalase) in erythrocytes and decreases in the malondialdehyde (MDA) concentration by 7, 10 and 21 days (p < 0.001). The microcirculation index was restored on the 3rd day after burn under treatment with BC-ZnO NPs-BDP wound dressings. The results of effective wound healing with BC-ZnO NPs-BDP nanocomposites can be explained by the synergistic effect of all nanocomposite components, which regulate oxygenation and microcirculation, reducing hypoxia and oxidative stress in a burn wound.

8.
Polymers (Basel) ; 13(9)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33925017

RESUMEN

Currently, there is an increased demand for biodegradable materials in society due to growing environmental problems. Special attention is paid to bacterial cellulose, which, due to its unique properties, has great prospects for obtaining functional materials for a wide range of applications, including adsorbents. In this regard, the aim of this study was to obtain a biocomposite material with adsorption properties in relation to fluoride ions based on bacterial cellulose using a highly productive strain of Komagataeibacter sucrofermentans H-110 on molasses medium. Films of bacterial cellulose were obtained. Their structure and properties were investigated by FTIR spectroscopy, NMR, atomic force microscopy, scanning electron microscopy, and X-ray structural analysis. The results show that the fiber thickness of the bacterial cellulose formed by the K. sucrofermentans H-110 strain on molasses medium was 60-90 nm. The degree of crystallinity of bacterial cellulose formed on the medium was higher than on standard Hestrin and Schramm medium and amounted to 83.02%. A new biocomposite material was obtained based on bacterial cellulose chemically immobilized on its surface using atomic-layer deposition of nanosized aluminum oxide films. The composite material has high sorption ability to remove fluoride ions from an aqueous medium. The maximum adsorption capacity of the composite is 80.1 mg/g (F/composite). The obtained composite material has the highest adsorption capacity of fluoride from water in comparison with other sorbents. The results prove the potential of bacterial cellulose-based biocomposites as highly effective sorbents for fluoride.

9.
Front Bioeng Biotechnol ; 8: 603407, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33344435

RESUMEN

Aerogels have gained significant interest in recent decades because of their unique properties such as high porosity, low density, high surface area, and excellent heat and noise insulation. However, their high cost and low mechanical strength limit their practical application. We developed appropriate conditions to produce aerogels with controlled density, high mechanical strength, and thermal characteristics from bacterial cellulose (BC) synthesized by the strain Komagataeibacter sucrofermentans H-110. Aerogels produced using TEMPO oxidized BC (OBC) exhibited high mechanical strength and lower shrinkage than those from native bacterial cellulose (NBC). Compared to the NBC, the use of TEMPO-oxidized BC with oxidation degrees (OD) of 1.44 and 3.04% led to the reduction of shrinkage of the aerogels from 41.02 to 17.08%. The strength of the aerogel produced from the TEMPO-oxidized BC with an oxidation degree of 1.44% was twice that of the aerogel produced from NBC. The addition of Mg2+ at concentrations of 20 and 40 mM during the preparation of the aerogels increased the strength of the aerogels by 4.9 times. The combined use of TEMPO-oxidized BC and Mg2+ allowed pore size reduction from 1,375 to 197.4 µm on the outer part of the aerogels, thereby decreasing the thermal conductivity coefficient from 0.036 to 0.0176 W/(m•K). Furthermore, novel biocomposites prepared from the aerogels based on NBC and OBC and sodium fusidate, which have high antibiotic activity against Staphylococcus aureus, were obtained. Owing to their antibacterial properties, these aerogels can be used as functional biomaterials in a wide range of applications such as in tissue engineering and fabrication of wound dressing materials.

10.
Braz J Microbiol ; 49 Suppl 1: 151-159, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29703527

RESUMEN

To reduce the cost of obtaining bacterial cellulose, acidic by-products of the alcohol and dairy industries were used without any pretreatment or addition of other nitrogen sources. Studies have shown that the greatest accumulation of bacterial cellulose (6.19g/L) occurs on wheat thin stillage for 3 days of cultivation under dynamic conditions, which is almost 3 times higher than on standard Hestrin and Schramm medium (2.14g/L). The use of whey as a nutrient medium makes it possible to obtain 5.45g/L bacterial cellulose under similar conditions of cultivation. It is established that the pH of the medium during the growth of Gluconacetobacter sucrofermentans B-11267 depends on the feedstock used and its initial value. By culturing the bacterium on thin stillage and whey, there is a decrease in the acidity of the waste. It is shown that the infrared spectra of bacterial cellulose obtained in a variety of environments have a similar character, but we found differences in the micromorphology and crystallinity of the resulting biopolymer.


Asunto(s)
Celulosa/biosíntesis , Gluconacetobacter/metabolismo , Microbiología Industrial/métodos , Residuos/análisis , Medios de Cultivo/economía , Medios de Cultivo/metabolismo , Etanol/metabolismo , Industria de Alimentos , Gluconacetobacter/crecimiento & desarrollo , Microbiología Industrial/economía , Triticum/metabolismo , Triticum/microbiología , Residuos/economía
11.
Braz. j. microbiol ; Braz. j. microbiol;49(supl.1): 151-159, 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-974324

RESUMEN

Abstract To reduce the cost of obtaining bacterial cellulose, acidic by-products of the alcohol and dairy industries were used without any pretreatment or addition of other nitrogen sources. Studies have shown that the greatest accumulation of bacterial cellulose (6.19 g/L) occurs on wheat thin stillage for 3 days of cultivation under dynamic conditions, which is almost 3 times higher than on standard Hestrin and Schramm medium (2.14 g/L). The use of whey as a nutrient medium makes it possible to obtain 5.45 g/L bacterial cellulose under similar conditions of cultivation. It is established that the pH of the medium during the growth of Gluconacetobacter sucrofermentans B-11267 depends on the feedstock used and its initial value. By culturing the bacterium on thin stillage and whey, there is a decrease in the acidity of the waste. It is shown that the infrared spectra of bacterial cellulose obtained in a variety of environments have a similar character, but we found differences in the micromorphology and crystallinity of the resulting biopolymer.


Asunto(s)
Residuos/análisis , Microbiología Industrial/métodos , Celulosa/biosíntesis , Gluconacetobacter/metabolismo , Residuos/economía , Triticum/metabolismo , Triticum/microbiología , Microbiología Industrial/economía , Industria de Alimentos , Medios de Cultivo/economía , Medios de Cultivo/metabolismo , Gluconacetobacter/crecimiento & desarrollo , Etanol/metabolismo
12.
Braz. j. microbiol ; Braz. j. microbiol;492018.
Artículo en Inglés | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469653

RESUMEN

Abstract To reduce the cost of obtaining bacterial cellulose, acidic by-products of the alcohol and dairy industries were used without any pretreatment or addition of other nitrogen sources. Studies have shown that the greatest accumulation of bacterial cellulose (6.19 g/L) occurs on wheat thin stillage for 3 days of cultivation under dynamic conditions, which is almost 3 times higher than on standard Hestrin and Schramm medium (2.14 g/L). The use of whey as a nutrient medium makes it possible to obtain 5.45 g/L bacterial cellulose under similar conditions of cultivation. It is established that the pH of the medium during the growth of Gluconacetobacter sucrofermentans B-11267 depends on the feedstock used and its initial value. By culturing the bacterium on thin stillage and whey, there is a decrease in the acidity of the waste. It is shown that the infrared spectra of bacterial cellulose obtained in a variety of environments have a similar character, but we found differences in the micromorphology and crystallinity of the resulting biopolymer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...