Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Basic Res Cardiol ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724619

RESUMEN

Succinate accumulates during myocardial ischemia and is rapidly oxidized during reperfusion, leading to reactive oxygen species (ROS) production through reverse electron transfer (RET) from mitochondrial complex II to complex I, and favoring cell death. Given that connexin 43 (Cx43) modulates mitochondrial ROS production, we investigated whether Cx43 influences RET using inducible knock-out Cx43Cre-ER(T)/fl mice. Oxygen consumption, ROS production, membrane potential and coenzyme Q (CoQ) pool were analyzed in subsarcolemmal (SSM, expressing Cx43) and interfibrillar (IFM) cardiac mitochondria isolated from wild-type Cx43fl/fl mice and Cx43Cre-ER(T)/fl knock-out animals treated with 4-hydroxytamoxifen (4OHT). In addition, infarct size was assessed in isolated hearts from these animals submitted to ischemia-reperfusion (IR), and treated or not with malonate, a complex II inhibitor attenuating RET. Succinate-dependent ROS production and RET were significantly lower in SSM, but not IFM, from Cx43-deficient animals. Mitochondrial membrane potential, a RET driver, was similar between groups, whereas CoQ pool (2.165 ± 0.338 vs. 4.18 ± 0.55 nmol/mg protein, p < 0.05) and its reduction state were significantly lower in Cx43-deficient animals. Isolated hearts from Cx43Cre-ER(T)/fl mice treated with 4OHT had a smaller infarct size after IR compared to Cx43fl/fl, despite similar concentration of succinate at the end of ischemia, and no additional protection by malonate. Cx43 deficiency attenuates ROS production by RET in SSM, but not IFM, and was associated with a decrease in CoQ levels and a change in its redox state. These results may partially explain the reduced infarct size observed in these animals and their lack of protection by malonate.

2.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36834836

RESUMEN

Endothelin (ET) is found to be increased in kidney disease secondary to hyperglycaemia, hypertension, acidosis, and the presence of insulin or proinflammatory cytokines. In this context, ET, via the endothelin receptor type A (ETA) activation, causes sustained vasoconstriction of the afferent arterioles that produces deleterious effects such as hyperfiltration, podocyte damage, proteinuria and, eventually, GFR decline. Therefore, endothelin receptor antagonists (ERAs) have been proposed as a therapeutic strategy to reduce proteinuria and slow the progression of kidney disease. Preclinical and clinical evidence has revealed that the administration of ERAs reduces kidney fibrosis, inflammation and proteinuria. Currently, the efficacy of many ERAs to treat kidney disease is being tested in randomized controlled trials; however, some of these, such as avosentan and atrasentan, were not commercialized due to the adverse events related to their use. Therefore, to take advantage of the protective properties of the ERAs, the use of ETA receptor-specific antagonists and/or combining them with sodium-glucose cotransporter 2 inhibitors (SGLT2i) has been proposed to prevent oedemas, the main ERAs-related deleterious effect. The use of a dual angiotensin-II type 1/endothelin receptor blocker (sparsentan) is also being evaluated to treat kidney disease. Here, we reviewed the main ERAs developed and the preclinical and clinical evidence of their kidney-protective effects. Additionally, we provided an overview of new strategies that have been proposed to integrate ERAs in kidney disease treatment.


Asunto(s)
Antagonistas de los Receptores de Endotelina , Enfermedades Renales , Humanos , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Antagonistas de los Receptores de la Endotelina A , Endotelina-1 , Endotelinas , Riñón , Enfermedades Renales/tratamiento farmacológico , Proteinuria/tratamiento farmacológico , Receptor de Endotelina A
3.
Clin Sci (Lond) ; 137(1): 87-104, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36524468

RESUMEN

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have proven to delay diabetic kidney disease (DKD) progression on top of the standard of care with the renin-angiotensin system (RAS) blockade. The molecular mechanisms underlying the synergistic effect of SGLT2i and RAS blockers is poorly understood. We gave a SGLT2i (empagliflozin), an angiotensin-converting enzyme inhibitor (ramipril), or a combination of both drugs for 8 weeks to diabetic (db/db) mice. Vehicle-treated db/db and db/m mice were used as controls. At the end of the experiment, mice were killed, and the kidneys were saved to perform a differential high-throughput proteomic analysis by mass spectrometry using isobaric tandem mass tags (TMT labeling) that allow relative quantification of the identified proteins. The differential proteomic analysis revealed 203 proteins differentially expressed in one or more experimental groups (false discovery rate < 0.05 and Log2 fold change ≥ ±1). Fourteen were differentially expressed in the kidneys from the db/db mice treated with empagliflozin with ramipril. Among them, MAP17 was up-regulated. These findings were subsequently validated by Western blot. The combined therapy of empagliflozin and ramipril up-regulated MAP17 in the kidney of a diabetic mice model. MAP17 is a major scaffolding protein of the proximal tubular cells that places transporters together, namely SGLT2 and NHE3. Our results suggest that SGLT2i on top of RAS blockade may protect the kidney by boosting the inactivation of NHE3 via the up-regulation of key scaffolder proteins such as MAP17.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ratones , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Sistema Renina-Angiotensina , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ramipril/farmacología , Ramipril/uso terapéutico , Proteómica , Intercambiador 3 de Sodio-Hidrógeno/metabolismo
4.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36361612

RESUMEN

Treatments with sodium-glucose 2 cotransporter inhibitors (SGLT2i) or endothelin receptor antagonists (ERA) have shown cardiorenal protective effects. The present study aimed to evaluate the cardiorenal beneficial effects of the combination of SGLT2i and ERA on top of renin-angiotensin system (RAS) blockade. Type 2 diabetic mice (db/db) were treated with different combinations of an SGLT2i (empagliflozin), an ERA (atrasentan), and an angiotensin-converting enzyme inhibitor (ramipril) for 8 weeks. Vehicle-treated diabetic mice and non-diabetic mice were included as controls. Weight, blood glucose, blood pressure, and kidney and heart function were monitored during the study. Kidneys and heart were collected for histological examination and to study the intrarenal RAS. Treatment with empagliflozin alone or combined significantly decreased blood glucose compared to vehicle-treated db/db. The dual and triple therapies achieved significantly greater reductions in diastolic blood pressure than ramipril alone. Compared to vehicle-treated db/db, empagliflozin combined with ramipril or in triple therapy significantly prevented GFR increase, but only the triple combination exerted greater protection against podocyte loss. In the heart, empagliflozin alone or combined reduced cardiac isovolumetric relaxation time (IVRT) and left atrium (LA) diameter as compared to vehicle-treated db/db. However, only the triple therapy was able to reduce cardiomyocyte area. Importantly, the add-on triple therapy further enhanced the intrarenal ACE2/Ang(1-7)/Mas protective arm of the RAS. These data suggest that triple therapy with empagliflozin, atrasentan and ramipril show synergistic cardiorenal protective effects in a type 2 diabetic mouse model.


Asunto(s)
Diabetes Mellitus Tipo 2 , Sistema Renina-Angiotensina , Ratones , Animales , Transportador 2 de Sodio-Glucosa , Atrasentán/farmacología , Antagonistas de los Receptores de Endotelina/farmacología , Glucemia , Ramipril/farmacología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Receptores de Endotelina
5.
Biomolecules ; 12(1)2022 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-35053290

RESUMEN

The reduction-oxidation (redox) system consists of the coupling and coordination of various electron gradients that are generated thanks to serial reduction-oxidation enzymatic reactions. These reactions happen in every cell and produce radical oxidants that can be mainly classified into reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS and RNS modulate cell-signaling pathways and cellular processes fundamental to normal cell function. However, overproduction of oxidative species can lead to oxidative stress (OS) that is pathological. Oxidative stress is a main contributor to diabetic kidney disease (DKD) onset. In the kidney, the proximal tubular cells require a high energy supply to reabsorb proteins, metabolites, ions, and water. In a diabetic milieu, glucose-induced toxicity promotes oxidative stress and mitochondrial dysfunction, impairing tubular function. Increased glucose level in urine and ROS enhance the activity of sodium/glucose co-transporter type 2 (SGLT2), which in turn exacerbates OS. SGLT2 inhibitors have demonstrated clear cardiovascular benefits in DKD which may be in part ascribed to the generation of a beneficial equilibrium between oxidant and antioxidant mechanisms.


Asunto(s)
Nefropatías Diabéticas , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Antioxidantes/metabolismo , Antioxidantes/farmacología , Nefropatías Diabéticas/metabolismo , Humanos , Riñón/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Transportador 2 de Sodio-Glucosa , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA