Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 64(14): 10139-10154, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34236190

RESUMEN

A new series of propionamide derivatives was developed as dual µ-opioid receptor agonists and σ1 receptor antagonists. Modification of a high-throughput screening hit originated a series of piperazinylcycloalkylmethyl propionamides, which were explored to overcome the challenge of achieving balanced dual activity and convenient drug-like properties. The lead compound identified, 18g, showed good analgesic effects in several animal models of both acute (paw pressure) and chronic (partial sciatic nerve ligation) pain, with reduced gastrointestinal effects in comparison with oxycodone.


Asunto(s)
Amidas/farmacología , Analgésicos Opioides/farmacología , Antagonistas de Narcóticos/farmacología , Dolor/tratamiento farmacológico , Receptores Opioides mu/agonistas , Receptores sigma/antagonistas & inhibidores , Amidas/síntesis química , Amidas/química , Analgésicos Opioides/síntesis química , Analgésicos Opioides/química , Animales , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Estructura Molecular , Antagonistas de Narcóticos/síntesis química , Antagonistas de Narcóticos/química , Relación Estructura-Actividad , Receptor Sigma-1
2.
J Extracell Vesicles ; 9(1): 1800222, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32944187

RESUMEN

Extracellular vesicles (EVs) are naturally occurring nano-sized carriers that are secreted by cells and facilitate cell-to-cell communication by their unique ability to transfer biologically active cargo. Despite the pronounced increase in our understanding of EVs over the last decade, from disease pathophysiology to therapeutic drug delivery, improved molecular tools to track their therapeutic delivery are still needed. Unfortunately, the present catalogue of tools utilised for EV labelling lacks sensitivity or are not sufficiently specific. Here, we have explored the bioluminescent labelling of EVs using different luciferase enzymes tethered to CD63 to achieve a highly sensitive system for in vitro and in vivo tracking of EVs. Using tetraspanin fusions to either NanoLuc or ThermoLuc permits performing highly sensitive in vivo quantification of EVs or real-time imaging, respectively, at low cost and in a semi-high throughput manner. We find that the in vivo distribution pattern of EVs is determined by the route of injection, but that different EV subpopulations display differences in biodistribution patterns. By applying this technology for real-time non-invasive in vivo imaging of EVs, we show that their distribution to different internal organs occurs just minutes after administration.

3.
Biochem Soc Trans ; 42(4): 1246-50, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25110032

RESUMEN

RNA granules have been observed in different organisms, cell types and under different conditions, and their formation is crucial for the mRNA life cycle. However, very little is known about the molecular mechanisms governing their assembly and disassembly. The aggregation-prone LSCRs (low-sequence-complexity regions), and in particular, the polyQ/N-rich regions, have been extensively studied under pathological conditions due to their role in neurodegenerative diseases. In the present review, we discuss recent in vitro, in vivo and computational data that, globally, suggest a role for polyQ/N regions in RNA granule assembly.


Asunto(s)
Péptidos/metabolismo , ARN Mensajero/metabolismo , Animales , Gránulos Citoplasmáticos/metabolismo , Humanos
4.
Biochem Soc Trans ; 41(4): 861-5, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23863145

RESUMEN

Regulating the expression of individual miRNAs (microRNAs) is important for cell development and function. The up- or down-regulation of the processing of specific miRNA precursors to the mature active form represents one tool to control miRNA concentration and is mediated by proteins that recognize the terminal loop of the RNA precursors. Terminal loop recognition is achieved by the combined action of several RNA-binding domains. The proteins can then regulate the processing by recruiting RNA enzymes, changing the RNA structure and preventing or enhancing the accessibility and processing activity of the core processing complexes. The present review focuses on how terminal loop-binding proteins recognize their RNA targets and mediate their regulatory function(s), and highlights how terminal loop-mediated regulation relates to the broader regulation of mRNA metabolism.


Asunto(s)
MicroARNs/fisiología , Humanos , MicroARNs/química , MicroARNs/metabolismo , Conformación de Ácido Nucleico , Precursores del ARN/química , Precursores del ARN/metabolismo
5.
J Cell Biol ; 198(4): 529-44, 2012 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-22891262

RESUMEN

The microRNA (miRNA)-induced silencing complex (miRISC) controls gene expression by a posttranscriptional mechanism involving translational repression and/or promoting messenger RNA (mRNA) deadenylation and degradation. The GW182/TNRC6 (GW) family proteins are core components of the miRISC and are essential for miRNA function. We show that mammalian GW proteins have distinctive functions in the miRNA pathway, with GW220/TNGW1 being essential for the formation of GW/P bodies containing the miRISC. miRISC aggregation and formation of GW/P bodies sequestered and stabilized translationally repressed target mRNA. Depletion of GW220 led to the loss of GW/P bodies and destabilization of miRNA-targeted mRNA. These findings support a model in which the cellular localization of the miRISC regulates the fate of the target mRNA.


Asunto(s)
Autoantígenos/genética , Autoantígenos/metabolismo , Interferencia de ARN/fisiología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Complejo Silenciador Inducido por ARN/fisiología , Animales , Autoantígenos/química , Línea Celular Tumoral , Células HEK293 , Células HeLa , Humanos , MicroARNs/metabolismo , Estabilidad del ARN/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química
6.
Proc Natl Acad Sci U S A ; 106(32): 13347-52, 2009 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-19654094

RESUMEN

Little is known about the organization or proteins involved in membrane-associated replication of prokaryotic genomes. Here we show that the actin-like MreB cytoskeleton of the distantly related bacteria Escherichia coli and Bacillus subtilis is required for efficient viral DNA replication. Detailed analyses of B. subtilis phage ϕ29 showed that the MreB cytoskeleton plays a crucial role in organizing phage DNA replication at the membrane. Thus, phage double-stranded DNA and components of the ϕ29 replication machinery localize in peripheral helix-like structures in a cytoskeleton-dependent way. Importantly, we show that MreB interacts directly with the ϕ29 membrane-protein p16.7, responsible for attaching viral DNA at the cell membrane. Altogether, the results reveal another function for the MreB cytoskeleton and describe a mechanism by which viral DNA replication is organized at the bacterial membrane.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Fagos de Bacillus/fisiología , Bacillus subtilis/metabolismo , Bacillus subtilis/virología , Proteínas Bacterianas/metabolismo , Replicación del ADN/fisiología , Replicación Viral/fisiología , Citoesqueleto de Actina/genética , Fagos de Bacillus/genética , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Bacteriófago PRD1/genética , Bacteriófago PRD1/fisiología , Membrana Celular/metabolismo , Membrana Celular/virología , Replicación del ADN/genética , ADN Viral/biosíntesis , ADN Viral/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/virología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genes Bacterianos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Mutación , Proteínas Virales/genética , Proteínas Virales/metabolismo , Acoplamiento Viral , Replicación Viral/genética
7.
Nucleic Acids Res ; 37(15): 4955-64, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19528067

RESUMEN

Members of groups 1 (e.g. 29) and 2 (e.g. Nf) of the 29 family of phages infect the spore forming bacterium Bacillus subtilis. Although classified as lytic phages, the lytic cycle of 29 can be suppressed and its genome can become entrapped into the B. subtilis spore. This constitutes an alternative infection strategy that depends on the presence of binding sites for the host-encoded protein Spo0A in the 29 genome. Binding of Spo0A to these sites represses 29 transcription and prevents initiation of DNA replication. Although the Nf genome can also become trapped into B. subtilis spores, in vivo studies showed that its lytic cycle is less susceptible to spo0A-mediated suppression than that of 29. Here we have analysed the molecular mechanism underlying this difference showing that Spo0A differently affects transcription and replication initiation of the genomes of these phages. Thus, whereas Spo0A represses all three main early promoters of 29, it only represses one out of the three equivalent early promoters of Nf. In addition, contrary to 29, Spo0A does not prevent the in vitro initiation of Nf DNA replication. Altogether, the differences in Spo0A-mediated regulation of transcription and replication between 29 and Nf explain their different behaviours in vivo.


Asunto(s)
Fagos de Bacillus/genética , Proteínas Bacterianas/metabolismo , Replicación del ADN , Factores de Transcripción/metabolismo , Transcripción Genética , Bacillus subtilis/virología , Secuencia de Bases , Sitios de Unión , Huella de ADN , ADN Viral/biosíntesis , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/metabolismo , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Origen de Réplica , Activación Transcripcional , Proteínas Virales/antagonistas & inhibidores
8.
Environ Microbiol ; 11(5): 1137-49, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19207565

RESUMEN

The phi29 family of phages is divided in three groups. Members of groups 1 and 2 infect the spore-forming bacterium Bacillus subtilis. Previous studies showed that group 1 phage phi29 adapts its infection strategy to the physiological state of the host. Thus, the lytic cycle of phi29 is suppressed when cells are infected during the early stages of sporulation and the infecting genome becomes trapped into the spore. A major element of this adaptive strategy is a very sensitive response to the host-encoded Spo0A protein, the key regulator for sporulation activation, which is directly responsible for suppression of phi29 development. Here we analysed if this adaptation is conserved in phage Nf belonging to group 2. The results obtained show that although Nf also possesses the alternative infection strategy, it is clearly less sensitive to Spo0A-mediated suppression than phi29. Sequence determination of the Nf genome revealed striking differences in the number of Spo0A binding site sequences. The results provide evidence that the life style of two highly related phages is distinctly tuned by differences in binding sites for a host-encoded regulatory protein, being a good example of how viruses have evolved to optimally exploit features of their host.


Asunto(s)
Fagos de Bacillus/crecimiento & desarrollo , Bacillus subtilis/fisiología , Bacillus subtilis/virología , Proteínas Bacterianas/fisiología , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/fisiología , Fagos de Bacillus/genética , Secuencia de Bases , Sitios de Unión , ADN Viral/química , ADN Viral/genética , Genes Virales , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Transcripción Genética , Ensayo de Placa Viral , Latencia del Virus
9.
Mol Microbiol ; 68(6): 1406-17, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18410285

RESUMEN

The host of the lytic bacteriophage phi 29 is the spore-forming bacterium Bacillus subtilis. When infection occurs during early stages of sporulation, however, phi 29 development is suppressed and the infecting phage genome becomes trapped into the developing spore. Recently, we have shown that Spo0A, the key transcriptional regulator for entry into sporulation, is directly responsible for suppression of the lytic phi 29 cycle in cells having initiated sporulation. Surprisingly, we found that phi 29 development is suppressed in a subpopulation of logarithmically growing culture and that spo0A is heterogeneously expressed during this growth stage. Furthermore, we showed that kinC and, to a minor extent, kinD, are responsible for heterogeneous expression levels of spo0A during logarithmical growth that are below the threshold to activate sporulation, but sufficient for suppression of the lytic cycle of phi 29. Whereas spo0A was known to be heterogeneously expressed during the early stages of sporulation, our findings show that this also occurs during logarithmical growth. These insights are likely to have important consequences, not only for the life cycle of phi 29, but also for B. subtilis developmental processes.


Asunto(s)
Fagos de Bacillus/crecimiento & desarrollo , Bacillus subtilis/enzimología , Bacillus subtilis/virología , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Quinasas/metabolismo , Factores de Transcripción/metabolismo , Fagos de Bacillus/genética , Fagos de Bacillus/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Proteínas Bacterianas/genética , Sitios de Unión , Genoma Viral , Histidina Quinasa , Mutación , Unión Proteica , Proteínas Quinasas/genética , Esporas Bacterianas/crecimiento & desarrollo , Esporas Bacterianas/virología , Factores de Transcripción/genética
10.
EMBO J ; 25(16): 3890-9, 2006 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-16888621

RESUMEN

The transcription factor Spo0A is a master regulator for entry into sporulation in Bacillus subtilis and also regulates expression of the virulent B. subtilis phage phi29. Here, we describe a novel function for Spo0A, being an inhibitor of DNA replication of both, the phi29 genome and the B. subtilis chromosome. Binding of Spo0A near the phi29 DNA ends, constituting the two origins of replication of the linear phi29 genome, prevents formation of phi29 protein p6-nucleoprotein initiation complex resulting in inhibition of phi29 DNA replication. At the B. subtilis oriC, binding of Spo0A to specific sequences, which mostly coincide with DnaA-binding sites, prevents open complex formation. Thus, by binding to the origins of replication, Spo0A prevents the initiation step of DNA replication of either genome. The implications of this novel role of Spo0A for phage phi29 development and the bacterial chromosome replication during the onset of sporulation are discussed.


Asunto(s)
Bacillus subtilis/fisiología , Proteínas Bacterianas/fisiología , Replicación del ADN , Factores de Transcripción/fisiología , Fagos de Bacillus/genética , Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Cromosomas Bacterianos/genética , ADN Bacteriano/fisiología , ADN Viral/fisiología , Proteínas de Unión al ADN/metabolismo , Datos de Secuencia Molecular , Complejo de Reconocimiento del Origen/metabolismo , Unión Proteica , Esporas Bacterianas/fisiología , Activación Transcripcional
11.
EMBO J ; 24(20): 3647-57, 2005 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-16193065

RESUMEN

Phage phi29 is a virulent phage of Bacillus subtilis with no known lysogenic cycle. Indeed, lysis occurs rapidly following infection of vegetative cells. Here, we show that phi29 possesses a powerful strategy that enables it to adapt its infection strategy to the physiological conditions of the infected host to optimize its survival and proliferation. Thus, the lytic cycle is suppressed when the infected cell has initiated the process of sporulation and the infecting phage genome is directed into the highly resistant spore to remain dormant until germination of the spore. We have also identified two host-encoded factors that are key players in this adaptive infection strategy. We present evidence that chromosome segregation protein Spo0J is involved in spore entrapment of the infected phi29 genome. In addition, we demonstrate that Spo0A, the master regulator for initiation of sporulation, suppresses phi29 development by repressing the main early phi29 promoters via different and novel mechanisms and also by preventing activation of the single late phi29 promoter.


Asunto(s)
Fagos de Bacillus/genética , Bacillus subtilis/virología , Proteínas Bacterianas/metabolismo , Regulación Viral de la Expresión Génica , Factores de Transcripción/metabolismo , Fagos de Bacillus/fisiología , Bacillus subtilis/fisiología , Secuencia de Bases , Segregación Cromosómica , Regulación hacia Abajo , Genoma Viral/fisiología , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Esporas Bacterianas/fisiología , Esporas Bacterianas/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...