Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109843

RESUMEN

The tertiary and quaternary structures of many proteins are stabilized by strong covalent forces, of which disulfide bonds are the most well known. A new type of intramolecular and intermolecular covalent bond has been recently reported, consisting of the Lys and Cys side-chains linked by an oxygen atom (NOS). These post-translational modifications are widely distributed amongst proteins, and are formed under oxidative conditions. Similar linkages are observed during antibiotic biosynthesis, where hydroxylamine intermediates are tethered to the sulfur of enzyme active site Cys residues. These linkages open the way to understanding protein structure and function, give new insights into enzyme catalysis and natural product biosynthesis, and offer new strategies for drug design.

2.
Biomolecules ; 14(3)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38540719

RESUMEN

α-Methylacyl-CoA racemase in M. tuberculosis (MCR) has an essential role in fatty acid metabolism and cholesterol utilization, contributing to the bacterium's survival and persistence. Understanding the enzymatic activity and structural features of MCR provides insights into its physiological and pathological significance and potential as a therapeutic target. Here, we report high-resolution crystal structures for wild-type MCR in a new crystal form (at 1.65 Å resolution) and for three active-site mutants, H126A, D156A and E241A, at 2.45, 1.64 and 1.85 Å resolutions, respectively. Our analysis of the new wild-type structure revealed a similar dimeric arrangement of MCR molecules to that previously reported and details of the catalytic site. The determination of the structures of these H126A, D156A and E241A mutants, along with their detailed kinetic analysis, has now allowed for a rigorous assessment of their catalytic properties. No significant change outside the enzymatic active site was observed in the three mutants, establishing that the diminution of catalytic activity is mainly attributable to disruption of the catalytic apparatus involving key hydrogen bonding and water-mediated interactions. The wild-type structure, together with detailed mutational and biochemical data, provide a basis for understanding the catalytic properties of this enzyme, which is important for the design of future anti-tuberculosis drug molecules.


Asunto(s)
Mycobacterium tuberculosis , Dominio Catalítico , Mycobacterium tuberculosis/genética , Cinética , Racemasas y Epimerasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...