Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Arterioscler Thromb Vasc Biol ; 36(4): 655-62, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26821951

RESUMEN

OBJECTIVE: Understanding the mechanisms regulating normal and pathological angiogenesis is of great scientific and clinical interest. In this report, we show that mutations in 2 different aminoacyl-transfer RNA synthetases, threonyl tRNA synthetase (tars(y58)) or isoleucyl tRNA synthetase (iars(y68)), lead to similar increased branching angiogenesis in developing zebrafish. APPROACH AND RESULTS: The unfolded protein response pathway is activated by aminoacyl-transfer RNA synthetase deficiencies, and we show that unfolded protein response genes atf4, atf6, and xbp1, as well as the key proangiogenic ligand vascular endothelial growth factor (vegfaa), are all upregulated in tars(y58) and iars(y68) mutants. Finally, we show that the protein kinase RNA-like endoplasmic reticulum kinase-activating transcription factor 4 arm of the unfolded protein response pathway is necessary for both the elevated vegfaa levels and increased angiogenesis observed in tars(y58) mutants. CONCLUSIONS: Our results suggest that endoplasmic reticulum stress acts as a proangiogenic signal via unfolded protein response pathway-dependent upregulation of vegfaa.


Asunto(s)
Isoleucina-ARNt Ligasa/deficiencia , Neovascularización Fisiológica , Treonina-ARNt Ligasa/deficiencia , Respuesta de Proteína Desplegada , Proteínas de Pez Cebra/deficiencia , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Regulación del Desarrollo de la Expresión Génica , Genotipo , Isoleucina-ARNt Ligasa/genética , Mutación , Fenotipo , Factores de Transcripción del Factor Regulador X , Transducción de Señal , Treonina-ARNt Ligasa/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteína 1 de Unión a la X-Box , Pez Cebra , Proteínas de Pez Cebra/genética
3.
Development ; 143(1): 147-59, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26657775

RESUMEN

The cerebral vasculature provides the massive blood supply that the brain needs to grow and survive. By acquiring distinctive cellular and molecular characteristics it becomes the blood-brain barrier (BBB), a selectively permeable and protective interface between the brain and the peripheral circulation that maintains the extracellular milieu permissive for neuronal activity. Accordingly, there is great interest in uncovering the mechanisms that modulate the formation and differentiation of the brain vasculature. By performing a forward genetic screen in zebrafish we isolated no food for thought (nft (y72)), a recessive late-lethal mutant that lacks most of the intracerebral central arteries (CtAs), but not other brain blood vessels. We found that the cerebral vascularization deficit of nft (y72) mutants is caused by an inactivating lesion in reversion-inducing cysteine-rich protein with Kazal motifs [reck; also known as suppressor of tumorigenicity 15 protein (ST15)], which encodes a membrane-anchored tumor suppressor glycoprotein. Our findings highlight Reck as a novel and pivotal modulator of the canonical Wnt signaling pathway that acts in endothelial cells to enable intracerebral vascularization and proper expression of molecular markers associated with BBB formation. Additional studies with cultured endothelial cells suggest that, in other contexts, Reck impacts vascular biology via the vascular endothelial growth factor (VEGF) cascade. Together, our findings have broad implications for both vascular and cancer biology.


Asunto(s)
Barrera Hematoencefálica/citología , Encéfalo/embriología , Circulación Cerebrovascular/genética , Proteínas Ligadas a GPI/genética , Neovascularización Fisiológica/genética , Vía de Señalización Wnt/genética , Proteínas de Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Encéfalo/irrigación sanguínea , Línea Celular , Circulación Cerebrovascular/fisiología , Células Endoteliales/citología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Mutación/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/embriología , Proteínas de Pez Cebra/metabolismo
4.
Blood ; 120(2): 489-98, 2012 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-22649102

RESUMEN

Understanding the mechanisms that regulate angiogenesis and translating these into effective therapies are of enormous scientific and clinical interests. In this report, we demonstrate the central role of CDP-diacylglycerol synthetase (CDS) in the regulation of VEGFA signaling and angiogenesis. CDS activity maintains phosphoinositide 4,5 bisphosphate (PIP2) availability through resynthesis of phosphoinositides, whereas VEGFA, mainly through phospholipase Cγ1, consumes PIP2 for signal transduction. Loss of CDS2, 1 of 2 vertebrate CDS enzymes, results in vascular-specific defects in zebrafish in vivo and failure of VEGFA-induced angiogenesis in endothelial cells in vitro. Absence of CDS2 also results in reduced arterial differentiation and reduced angiogenic signaling. CDS2 deficit-caused phenotypes can be successfully rescued by artificial elevation of PIP2 levels, and excess PIP2 or increased CDS2 activity can promote excess angiogenesis. These results suggest that availability of CDS-controlled resynthesis of phosphoinositides is essential for angiogenesis.


Asunto(s)
Diacilglicerol Colinafosfotransferasa/metabolismo , Fosfatidilinositoles/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Vasos Sanguíneos/embriología , Vasos Sanguíneos/metabolismo , ADN Complementario/genética , Diacilglicerol Colinafosfotransferasa/genética , Humanos , Mutación , Neovascularización Fisiológica/genética , ARN Interferente Pequeño/genética , Transducción de Señal , Pez Cebra/genética , Proteínas de Pez Cebra/genética
5.
Nat Med ; 18(6): 967-73, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22581286

RESUMEN

Despite the clear major contribution of hyperlipidemia to the prevalence of cardiovascular disease in the developed world, the direct effects of lipoproteins on endothelial cells have remained obscure and are under debate. Here we report a previously uncharacterized mechanism of vessel growth modulation by lipoprotein availability. Using a genetic screen for vascular defects in zebrafish, we initially identified a mutation, stalactite (stl), in the gene encoding microsomal triglyceride transfer protein (mtp), which is involved in the biosynthesis of apolipoprotein B (ApoB)-containing lipoproteins. By manipulating lipoprotein concentrations in zebrafish, we found that ApoB negatively regulates angiogenesis and that it is the ApoB protein particle, rather than lipid moieties within ApoB-containing lipoproteins, that is primarily responsible for this effect. Mechanistically, we identified downregulation of vascular endothelial growth factor receptor 1 (VEGFR1), which acts as a decoy receptor for VEGF, as a key mediator of the endothelial response to lipoproteins, and we observed VEGFR1 downregulation in hyperlipidemic mice. These findings may open new avenues for the treatment of lipoprotein-related vascular disorders.


Asunto(s)
Apolipoproteínas B/fisiología , Lipoproteínas/fisiología , Neovascularización Fisiológica , Receptor 1 de Factores de Crecimiento Endotelial Vascular/fisiología , Secuencia de Aminoácidos , Animales , Apolipoproteína C-II/fisiología , Proteínas Bacterianas/genética , Proteínas Portadoras/fisiología , Células Cultivadas , Humanos , Lipoproteínas LDL/metabolismo , Proteínas Luminiscentes/genética , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Receptor 1 de Factores de Crecimiento Endotelial Vascular/análisis , Pez Cebra
6.
Development ; 138(22): 4875-86, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22007135

RESUMEN

Here, we show that a novel Rspo1-Wnt-Vegfc-Vegfr3 signaling pathway plays an essential role in developmental angiogenesis. A mutation in R-spondin1 (rspo1), a Wnt signaling regulator, was uncovered during a forward-genetic screen for angiogenesis-deficient mutants in the zebrafish. Embryos lacking rspo1 or the proposed rspo1 receptor kremen form primary vessels by vasculogenesis, but are defective in subsequent angiogenesis. Endothelial cell-autonomous inhibition of canonical Wnt signaling also blocks angiogenesis in vivo. The pro-angiogenic effects of Rspo1/Wnt signaling are mediated by Vegfc/Vegfr3(Flt4) signaling. Vegfc expression is dependent on Rspo1 and Wnt, and Vegfc and Vegfr3 are necessary to promote angiogenesis downstream from Rspo1-Wnt. As all of these molecules are expressed by the endothelium during sprouting stages, these results suggest that Rspo1-Wnt-VegfC-Vegfr3 signaling plays a crucial role as an endothelial-autonomous permissive cue for developmental angiogenesis.


Asunto(s)
Neovascularización Fisiológica/genética , Factor C de Crecimiento Endotelial Vascular/fisiología , Receptor 3 de Factores de Crecimiento Endotelial Vascular/fisiología , Vía de Señalización Wnt/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Células Cultivadas , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Modelos Biológicos , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Trombospondinas , Regulación hacia Arriba/genética , Regulación hacia Arriba/fisiología , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/genética , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
Dev Biol ; 303(2): 772-83, 2007 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-17125762

RESUMEN

Members of the ETS family of transcription factors are among the first genes expressed in the developing vasculature, but loss-of-function experiments for individual ETS factors in mice have not uncovered important early functional roles for these genes. However, multiple ETS factors are expressed in spatially and temporally overlapping patterns in the developing vasculature, suggesting possible functional overlap. We have taken a comprehensive approach to exploring the function of these factors during vascular development by employing the genetic and experimental tools available in the zebrafish to analyze four ETS family members expressed together in the zebrafish vasculature; fli1, fli1b, ets1, and etsrp. We isolated and characterized an ENU-induced mutant with defects in trunk angiogenesis and positionally cloned the defective gene from this mutant, etsrp. Using the etsrp morpholinos targeting each of the four genes, we show that the four ETS factors function combinatorially during vascular and hematopoietic development. Reduction of etsrp or any of the other genes alone results in either partial or no defects in endothelial differentiation, while combined reduction in the function of all four genes causes dramatic loss of endothelial cells. Our results demonstrate that combinatorial ETS factor function is essential for early endothelial specification and differentiation.


Asunto(s)
Vasos Sanguíneos/embriología , Vasos Sanguíneos/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Mapeo Cromosómico , Clonación Molecular , Cartilla de ADN/genética , Regulación del Desarrollo de la Expresión Génica , Hematopoyesis/genética , Morfogénesis/genética , Mutación , Neovascularización Fisiológica/genética , Oligodesoxirribonucleótidos Antisentido/genética , Proteína Proto-Oncogénica c-ets-1/genética , Proteína Proto-Oncogénica c-ets-1/metabolismo , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteínas Proto-Oncogénicas c-ets/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
8.
Dev Dyn ; 235(7): 1753-60, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16607654

RESUMEN

We identified four mutants in two distinct loci exhibiting similar trunk vascular patterning defects in an F3 genetic screen for zebrafish vascular mutants. Initial vasculogenesis is not affected in these mutants, with proper specification and differentiation of endothelial cells. However, all four display severe defects in the growth and patterning of angiogenic vessels in the trunk, with ectopic branching and disoriented migration of intersegmental vessels. The four mutants are allelic to previously characterized mutants at the fused-somites (fss) and beamter (bea) loci, and they exhibit comparable defects in trunk somite boundary formation. The fss locus has been shown to correspond to tbx24; we show here that bea mutants are defective in the zebrafish dlC gene. Somitic expression of known vascular guidance factors efnb2a, sema3a1, and sema3a2 is aberrantly patterned in fss and bea mutants, suggesting that the vascular phenotype is due to loss of proper guidance cues provided by these factors.


Asunto(s)
Vasos Sanguíneos/embriología , Neovascularización Fisiológica/fisiología , Somitos/citología , Proteínas de Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo , Embrión no Mamífero , Mutación , Neovascularización Fisiológica/genética , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Somitos/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Pez Cebra , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...