Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2307591, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864546

RESUMEN

Image-based cytometry faces challenges due to technical variations arising from different experimental batches and conditions, such as differences in instrument configurations or image acquisition protocols, impeding genuine biological interpretation of cell morphology. Existing solutions, often necessitating extensive pre-existing data knowledge or control samples across batches, have proved limited, especially with complex cell image data. To overcome this, "Cyto-Morphology Adversarial Distillation" (CytoMAD), a self-supervised multi-task learning strategy that distills biologically relevant cellular morphological information from batch variations, is introduced to enable integrated analysis across multiple data batches without complex data assumptions or extensive manual annotation. Unique to CytoMAD is its "morphology distillation", symbiotically paired with deep-learning image-contrast translation-offering additional interpretable insights into label-free cell morphology. The versatile efficacy of CytoMAD is demonstrated in augmenting the power of biophysical imaging cytometry. It allows integrated label-free classification of human lung cancer cell types and accurately recapitulates their progressive drug responses, even when trained without the drug concentration information. CytoMAD  also allows joint analysis of tumor biophysical cellular heterogeneity, linked to epithelial-mesenchymal plasticity, that standard fluorescence markers overlook. CytoMAD can substantiate the wide adoption of biophysical cytometry for cost-effective diagnosis and screening.

2.
Commun Biol ; 6(1): 449, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095203

RESUMEN

Complex and irregular cell architecture is known to statistically exhibit fractal geometry, i.e., a pattern resembles a smaller part of itself. Although fractal variations in cells are proven to be closely associated with the disease-related phenotypes that are otherwise obscured in the standard cell-based assays, fractal analysis with single-cell precision remains largely unexplored. To close this gap, here we develop an image-based approach that quantifies a multitude of single-cell biophysical fractal-related properties at subcellular resolution. Taking together with its high-throughput single-cell imaging performance (~10,000 cells/sec), this technique, termed single-cell biophysical fractometry, offers sufficient statistical power for delineating the cellular heterogeneity, in the context of lung-cancer cell subtype classification, drug response assays and cell-cycle progression tracking. Further correlative fractal analysis shows that single-cell biophysical fractometry can enrich the standard morphological profiling depth and spearhead systematic fractal analysis of how cell morphology encodes cellular health and pathological conditions.


Asunto(s)
Neoplasias Pulmonares , Humanos
3.
Comput Struct Biotechnol J ; 21: 1598-1605, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36874160

RESUMEN

Current single-cell visualisation techniques project high dimensional data into 'map' views to identify high-level structures such as cell clusters and trajectories. New tools are needed to allow the transversal through the high dimensionality of single-cell data to explore the single-cell local neighbourhood. StarmapVis is a convenient web application displaying an interactive downstream analysis of single-cell expression or spatial transcriptomic data. The concise user interface is powered by modern web browsers to explore the variety of viewing angles unavailable to 2D media. Interactive scatter plots display clustering information, while the trajectory and cross-comparison among different coordinates are displayed in connectivity networks. Automated animation of camera view is a unique feature of our tool. StarmapVis also offers a useful animated transition between two-dimensional spatial omic data to three-dimensional single cell coordinates. The usability of StarmapVis is demonstrated by four data sets, showcasing its practical usability. StarmapVis is available at: https://holab-hku.github.io/starmapVis.

4.
Nat Protoc ; 16(9): 4227-4264, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34341580

RESUMEN

Laser scanning is used in advanced biological microscopy to deliver superior imaging contrast, resolution and sensitivity. However, it is challenging to scale up the scanning speed required for interrogating a large and heterogeneous population of biological specimens or capturing highly dynamic biological processes at high spatiotemporal resolution. Bypassing the speed limitation of traditional mechanical methods, free-space angular-chirp-enhanced delay (FACED) is an all-optical, passive and reconfigurable laser-scanning approach that has been successfully applied in different microscopy modalities at an ultrafast line-scan rate of 1-80 MHz. Optimal FACED imaging performance requires optimized experimental design and implementation to enable specific high-speed applications. In this protocol, we aim to disseminate information allowing FACED to be applied to a broader range of imaging modalities. We provide (i) a comprehensive guide and design specifications for the FACED hardware; (ii) step-by-step optical implementations of the FACED module including the key custom components; and (iii) the overall image acquisition and reconstruction pipeline. We illustrate two practical imaging configurations: multimodal FACED imaging flow cytometry (bright-field, fluorescence and second-harmonic generation) and kHz 2D two-photon fluorescence microscopy. Users with basic experience in optical microscope operation and software engineering should be able to complete the setup of the FACED imaging hardware and software in ~2-3 months.


Asunto(s)
Microscopía Confocal/métodos , Imagen Óptica/métodos , Citometría de Flujo , Microscopía Confocal/instrumentación , Microscopía de Fluorescencia por Excitación Multifotónica , Imagen Óptica/instrumentación
5.
Lab Chip ; 20(20): 3696-3708, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-32935707

RESUMEN

The association of the intrinsic optical and biophysical properties of cells to homeostasis and pathogenesis has long been acknowledged. Defining these label-free cellular features obviates the need for costly and time-consuming labelling protocols that perturb the living cells. However, wide-ranging applicability of such label-free cell-based assays requires sufficient throughput, statistical power and sensitivity that are unattainable with current technologies. To close this gap, we present a large-scale, integrative imaging flow cytometry platform and strategy that allows hierarchical analysis of intrinsic morphological descriptors of single-cell optical and mass density within a population of millions of cells. The optofluidic cytometry system also enables the synchronous single-cell acquisition of and correlation with fluorescently labeled biochemical markers. Combined with deep neural network and transfer learning, this massive single-cell profiling strategy demonstrates the label-free power to delineate the biophysical signatures of the cancer subtypes, to detect rare populations of cells in the heterogeneous samples (10-5), and to assess the efficacy of targeted therapeutics. This technique could spearhead the development of optofluidic imaging cell-based assays that stratify the underlying physiological and pathological processes based on the information-rich biophysical cellular phenotypes.


Asunto(s)
Aprendizaje Profundo , Biofisica , Citometría de Flujo , Citometría de Imagen , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA