Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202404561, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38887983

RESUMEN

Photodynamic therapy (PDT) utilizes reactive oxygen species (ROS) for eradication of cancer cells. Its effectiveness is governed by the oxygen content, which is scarce in the hypoxic tumor microenvironment. We report herein two zinc(II) phthalocyanines substituted with two or four nitric oxide (NO)-releasing moieties, namely ZnPc-2NO and ZnPc-4NO, which can suppress the mitochondrial respiration, thereby sparing more intracellular oxygen for PDT. Using HT29 human colorectal adenocarcinoma cells and A549 human lung carcinoma cells, we have demonstrated that both conjugates release NO upon interaction with the intracellular glutathione, which can reduce the cellular oxygen consumption rate and adenosine triphosphate generation and alter the mitochondrial membrane potential. They can also relieve the hypoxic status of cancer cells and decrease the expression of hypoxia-inducible factor protein HIF-1α. Upon light irradiation, both conjugates can generate ROS and induce cytotoxicity even under a hypoxic condition, overcoming the oxygen-dependent nature of PDT. Interestingly, the photodynamic action of ZnPc-2NO elicits the release of damage-associated molecular patterns, inducing the maturation of dendritic cells and triggering an antitumor immune response. The immunogenic cell death caused by this oxygen-economized PDT has been demonstrated through a series of in vitro and in vivo experiments.

2.
Adv Mater ; : e2306450, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37812831

RESUMEN

Magnetic particle imaging (MPI) is an emerging non-invasive tomographic technique based on the response of magnetic nanoparticles (MNPs) to oscillating drive fields at the center of a static magnetic gradient. In contrast to magnetic resonance imaging (MRI), which is driven by uniform magnetic fields and projects the anatomic information of the subjects, MPI directly tracks and quantifies MNPs in vivo without background signals. Moreover, it does not require radioactive tracers and has no limitations on imaging depth. This article first introduces the basic principles of MPI and important features of MNPs for imaging sensitivity, spatial resolution, and targeted biodistribution. The latest research aiming to optimize the performance of MPI tracers is reviewed based on their material composition, physical properties, and surface modifications. While the unique advantages of MPI have led to a series of promising biomedical applications, recent development of MPI in investigating vascular abnormalities in cardiovascular and cerebrovascular systems, and cancer are also discussed. Finally, recent progress and challenges in the clinical translation of MPI are discussed to provide possible directions for future research and development.

3.
J Control Release ; 362: 513-523, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37666301

RESUMEN

Integration of antimicrobial polymeric nanoparticles into hydrogel materials presents a promising strategy to address multidrug-resistant biofilm infections. Here we report an injectable hydrogel loaded with engineered cationic antimicrobial polymeric nanoparticles (PNPs) for the effective topical treatment of severe wound biofilm infections. The PNPs demonstrated biofilm penetration and disruption, resulting in the eradication of resistant and persister cells that reside within the biofilm. Significantly, PNPs did not elicit resistance development even after multiple exposures to sub-therapeutic doses. In vitro studies showed PNPs significantly reduced prolonged inflammation due to infection and promoted fibroblast migration. These PNPs were then incorporated into Poloxamer 407 (P407) hydrogels and utilized as an inert carrier for PNPs to provide a controlled and sustained topical release of the antimicrobial nanoparticles at the wound area. In vivo studies using a mature (4-day) wound biofilm infection in a murine model mimicking severe human wound infections demonstrated provided 99% bacterial biofilm clearance and significantly enhanced wound healing. Overall, this work demonstrated the efficacy and selectivity of the antimicrobial polymer-loaded hydrogel platform as a topical treatment for difficult-to-treat wound biofilm infections.

4.
Chem Asian J ; 18(17): e202300562, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37489571

RESUMEN

A water-soluble 1,2,4,5-tetrazine-substituted carbon-dipyrromethene (C-DIPY) was synthesized from the previously reported carbonyl pyrrole dimer through a two-step procedure. Owing to the presence of a tetrazine moiety, the fluorescence emission of this compound was largely quenched in phosphate-buffered saline at pH 7.4. Upon addition of a bicyclo[6.1.0]non-4-yne (BCN) derivative, the tetrazine-based quenching component of the compound was disrupted through the inverse electron-demand Diels-Alder reaction to restore the fluorescence in up to 6.6-fold. This bioorthogonal activation was also demonstrated using U-87 MG human glioblastoma cells, in which the fluorescence intensity of this C-DIPY could be enhanced by 8.7-fold upon post-incubation with the BCN derivative. The results showed that this tetrazine-caged C-DIPY can serve as a bioorthogonally activatable fluorescent probe for bioimaging. The compound, however, was found to reside preferentially in the lysosomes instead of the mitochondria of the cells as predicted based on its cationic character, which could be attributed to its energy-dependent endocytic cellular uptake pathway, for which lysosomes are the end station.


Asunto(s)
Colorantes Fluorescentes , Compuestos Heterocíclicos , Humanos , Colorantes Fluorescentes/química , Reacción de Cicloadición , Porfobilinógeno
5.
Nat Chem ; 15(7): 930-939, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37353602

RESUMEN

Conventional light-driven cancer therapeutics require oxygen and visible light to indirectly damage biomolecules, limiting their efficacy in deep, hypoxic tumours. Here we report the use of near-infrared-activated small-molecule Pt(IV) photooxidants to directly oxidize intracellular biomolecules in an oxygen-independent manner, achieving controllable and effective elimination of cancer stem cells. These Pt(IV) complexes accumulate in the endoplasmic reticulum and show low toxicity in the dark. Upon irradiation, the resultant metal-enhanced photooxidation effect causes them to robustly photooxidize survival-related biomolecules, induce intense oxidative stress, disrupt intracellular pH (pHi) homeostasis and initiate nonclassical necrosis. In vivo experiments confirm that the lead photooxidant can effectively inhibit tumour growth, suppress metastasis and activate the immune system. Our study validates the concept of metal-enhanced photooxidation and the subsequent chemotherapeutic applications, supporting the development of such localized photooxidants to directly damage intracellular biomolecules and decrease pHi as a strategy for effective metal-based drugs.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Platino (Metal)/química , Platino (Metal)/uso terapéutico , Antineoplásicos/química , Oxígeno , Neoplasias/tratamiento farmacológico , Luz , Línea Celular Tumoral
6.
Chempluschem ; 88(6): e202300159, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37042437

RESUMEN

Guest Editors Pui-Chi Lo, Dennis Ng, Ravindra Pandey, and Petr Zimcik introduce the Special Collection on Photodynamic Therapy and give an overview of the developments and challenges in this exciting field.


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Neoplasias/tratamiento farmacológico
7.
J Am Chem Soc ; 145(13): 7361-7375, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36961946

RESUMEN

An advanced photodynamic molecular beacon (PMB) was designed and synthesized, in which a distyryl boron dipyrromethene (DSBDP)-based photosensitizer and a Black Hole Quencher 3 moiety were connected via two peptide segments containing the sequences PLGVR and GFLG, respectively, of a cyclic peptide. These two short peptide sequences are well-known substrates of matrix metalloproteinase-2 (MMP-2) and cathepsin B, respectively, both of which are overexpressed in a wide range of cancer cells either extracellularly (for MMP-2) or intracellularly (for cathepsin B). Owing to the efficient Förster resonance energy transfer between the two components, this PMB was fully quenched in the native form. Only upon interaction with both MMP-2 and cathepsin B, either in a buffer solution or in cancer cells, both of the segments were cleaved specifically, and the two components could be completely separated, thereby restoring the photodynamic activities of the DSBDP moiety. This PMB could also be activated in tumors, and it effectively suppressed the tumor growth in A549 tumor-bearing nude mice upon laser irradiation without causing notable side effects. In particular, it did not cause skin photosensitivity, which is a very common side effect of photodynamic therapy (PDT) using conventional "always-on" photosensitizers. The overall results showed that this "double-locked" PMB functioned as a biological AND logic gate that could only be unlocked by the coexistence of two tumor-associated enzymes, which could greatly enhance the tumor specificity in PDT.


Asunto(s)
Fotoquimioterapia , Ratones , Animales , Metaloproteinasa 2 de la Matriz , Catepsina B , Ratones Desnudos , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Péptidos/química
8.
Acta Biomater ; 162: 57-71, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36944404

RESUMEN

Mixing a glutathione (GSH)-responsive carboxy zinc(II) phthalocyanine (ZnPc*) and CuSO4·5H2O in water with or without the presence of the anticancer drug SN38 resulted in the formation of self-assembled nanotherapeutics labeled as ZnPc*/Cu/SN38@NP and ZnPc*/Cu@NP, respectively. The Cu2+ ions not only promoted the self-assembly of the carboxy phthalocyanine through metal complexation, but also catalyzed the transformation of H2O2 to oxygen via a catalase-like reaction, rendering an oxygen-replenishing property to the nanosystems. Both nanosystems exhibited high stability in aqueous media, but the nanoparticles disassembled gradually in an acidic or GSH-enriched environment and inside human colorectal adenocarcinoma HT29 cells, releasing the encapsulated therapeutic components. The disassembly process together with the activation by the intracellular GSH led to relaxation of the intrinsic quenching of the nanophotosensitizers and restoration of the photoactivities of ZnPc*. Under a hypoxic condition, ZnPc*/Cu/SN38@NP could attenuate the intracellular hypoxia level and maintain the photodynamic activity due to its Cu2+-promoted oxygen-replenishing ability. The photodynamic effect of ZnPc* and the anticancer effect of SN38 worked cooperatively, causing substantial apoptotic cell death. The dual therapeutic actions could also effectively inhibit the tumor growth in HT29 tumor-bearing nude mice without initiating notable adverse effects to the mice. STATEMENT OF SIGNIFICANCE: The oxygen-dependent nature of photodynamic therapy generally reduces its efficacy against tumor hypoxia, which is a common characteristic of advanced solid tumors and usually leads to resistance toward various anticancer therapies. We report herein a facile approach to assemble a glutathione-responsive carboxy phthalocyanine-based photosensitizer and an anticancer drug in aqueous media, in which Cu(II) ions were used to promote the self-assembly through metal complexation and catalyze the conversion of H2O2 to oxygen through a catalase-like reaction, making the resulting nanoparticles possessing an oxygen-replenishing property that could promote the photodynamic effect against hypoxic cancer cells and tumors. The use of Cu(II) ions to achieve the aforementioned dual functions in the fabrication of advanced nano-photosensitizing systems has not been reported.


Asunto(s)
Antineoplásicos , Nanopartículas , Compuestos Organometálicos , Fotoquimioterapia , Humanos , Animales , Ratones , Catalasa/metabolismo , Oxígeno , Ratones Desnudos , Hipoxia Tumoral , Peróxido de Hidrógeno , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Glutatión/metabolismo , Línea Celular Tumoral , Compuestos Organometálicos/farmacología , Nanopartículas/uso terapéutico , Compuestos de Zinc
9.
Adv Sci (Weinh) ; 10(8): e2206212, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36698296

RESUMEN

Brain metastases (BRM) are common in advanced lung cancer. However, their treatment is challenging due to the blood-brain barrier (BBB) and the immunosuppressive tumor microenvironment (ITME). Microparticles (MPs), a type of extracellular vesicle, can serve as biocompatible drug delivery vehicles that can be further modulated with genetic engineering techniques. MPs prepared from cells induced with different insults are compared and it is found that radiation-treated cell-released microparticles (RMPs) achieve optimal targeting and macrophage activation. The enzyme ubiquitin-specific protease 7 (USP7), which simultaneously regulates tumor growth and reprograms M2 macrophages (M2Φ), is found to be expressed in BRM. Engineered RMPs are then constructed that comprise: 1) the RMP carrier that targets and reprograms M2Φ; 2) a genetically expressed SR-B1-targeting peptide for improved BBB permeability; and 3) a USP7 inhibitor to kill tumor cells and reprogram M2Φ. These RMPs successfully cross the BBB and target M2Φ in vitro and in vivo in mice, effectively reprogramming M2Φ and improving survival in a murine BRM model. Therapeutic effects are further augmented when combined with immune checkpoint blockade. This study provides proof-of-concept for the use of genetically engineered MPs for the treatment of BRM.


Asunto(s)
Neoplasias Encefálicas , Microambiente Tumoral , Animales , Ratones , Peptidasa Específica de Ubiquitina 7 , Inmunoterapia/métodos , Neoplasias Encefálicas/terapia , Sistemas de Liberación de Medicamentos
10.
J Control Release ; 353: 663-674, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36503072

RESUMEN

We report herein a versatile and efficient bioorthogonal strategy to actualise targeted delivery and site-specific activation of photosensitisers for precise antitumoural photodynamic therapy. The strategy involved the use of an isonitrile-caged distyryl boron dipyrromethene-based photosensitiser, labelled as NC-DSBDP, of which the photoactivities could be specifically activated upon conversion of the meso ester substituent to carboxylate initiated by the [4 + 1] cycloaddition with a tetrazine derivative. By using two tetrazines conjugated with a galactose moiety or the GE11 peptide, labelled as gal-Tz and GE11-Tz, we could selectively label the cancer cells overexpressed with the asialoglycoprotein receptor and the epidermal growth factor receptor respectively. Upon encountering the internalised NC-DSBDP, these tetrazines triggered the "ester-to-carboxylate" transformation of this compound, activating its fluorescence and reactive oxygen species generation inside the target cells. The bioorthogonal activation was also demonstrated in vivo, leading to effective photo-eradication of the tumour in nude mice.


Asunto(s)
Compuestos Heterocíclicos , Neoplasias , Fotoquimioterapia , Animales , Ratones , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Ratones Desnudos , Compuestos Heterocíclicos/química , Neoplasias/tratamiento farmacológico
11.
J Nanobiotechnology ; 20(1): 345, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35883176

RESUMEN

Nanovaccines, a new generation of vaccines that use nanoparticles as carriers and/or adjuvants, have been widely used in the prevention and treatment of various diseases, including cancer. Nanovaccines have sparked considerable interest in cancer therapy due to a variety of advantages, including improved access to lymph nodes (LN), optimal packing and presentation of antigens, and induction of a persistent anti-tumor immune response. As a delivery system for cancer vaccines, various types of nanoparticles have been designed to facilitate the delivery of antigens and adjuvants to lymphoid organs and antigen-presenting cells (APCs). Particularly, some types of nanoparticles are able to confer an immune-enhancing capability and can themselves be utilized for adjuvant-like effect for vaccines, suggesting a direction for a better use of nanomaterials and the optimization of cancer vaccines. However, this role of nanoparticles in vaccines has not been well studied. To further elucidate the role of self-adjuvanting nanovaccines in cancer therapy, we review the mechanisms of antitumor vaccine adjuvants with respect to nanovaccines with self-adjuvanting properties, including enhancing cross-presentation, targeting signaling pathways, biomimicking of the natural invasion process of pathogens, and further unknown mechanisms. We surveyed self-adjuvanting cancer nanovaccines in clinical research and discussed their advantages and challenges. In this review, we classified self-adjuvanting cancer nanovaccines according to the underlying immunomodulatory mechanism, which may provide mechanistic insights into the design of nanovaccines in the future.


Asunto(s)
Vacunas contra el Cáncer , Nanopartículas , Neoplasias , Adyuvantes Inmunológicos , Células Presentadoras de Antígenos , Humanos , Inmunoterapia , Nanopartículas/química , Neoplasias/terapia
12.
Development ; 149(14)2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35833708

RESUMEN

Eye size is a key parameter of visual function, but the precise mechanisms of eye size control remain poorly understood. Here, we discovered that the lipogenic transcription factor sterol regulatory element-binding protein 2 (SREBP2) has an unanticipated function in the retinal pigment epithelium (RPE) to promote eye size in postnatal mice. SREBP2 transcriptionally represses low density lipoprotein receptor-related protein 2 (Lrp2), which has been shown to restrict eye overgrowth. Bone morphogenetic protein 2 (BMP2) is the downstream effector of Srebp2 and Lrp2, and Bmp2 is suppressed by SREBP2 transcriptionally but activated by Lrp2. During postnatal development, SREBP2 protein expression in the RPE decreases whereas that of Lrp2 and Bmp2 increases as the eye growth rate reduces. Bmp2 is the key determinant of eye size such that its level in mouse RPE inversely correlates with eye size. Notably, RPE-specific Bmp2 overexpression by adeno-associated virus effectively prevents the phenotypes caused by Lrp2 knock out. Together, our study shows that rapid postnatal eye size increase is governed by an RPE-derived signaling pathway, which consists of both positive and negative regulators of eye growth.


Asunto(s)
Proteína Morfogenética Ósea 2 , Proteína 2 de Unión a Elementos Reguladores de Esteroles , Animales , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Regulación de la Expresión Génica , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones , Epitelio Pigmentado de la Retina/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo
13.
Chemistry ; 28(57): e202201652, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-35852020

RESUMEN

A multifunctional photodynamic molecular beacon (PMB) has been designed and synthesized which contains an epidermal growth factor receptor (EGFR)-targeting cyclic peptide and a trimeric phthalocyanine skeleton in which the three zinc(II) phthalocyanine units are each substituted with a glutathione (GSH)-responsive 2,4-dinitrobenzenesulfonate (DNBS) quencher and are linked via two cathepsin B-cleavable GFLG peptide chains. This tailor-made conjugate is fully quenched in the native form due to the photoinduced electron transfer effect of the DNBS moieties and the self-quenching of the phthalocyanine units. It can target the EGFR overexpressed in cancer cells, and after receptor-mediated endocytosis, it can be activated selectively by the co-existence of intracellular GSH and cathepsin B, both of which are also overproduced in cancer cells, in terms of fluorescence emission and singlet oxygen generation. The cell-selective behavior of this PMB has been demonstrated using a range of cancer cells with different expression levels of EGFR, while the stimuli-responsive properties have been studied both in vitro and in various aqueous media. The overall results show that this advanced PMB, which exhibits several levels of control of the tumor specificity, is a promising photosensitizer for precise antitumoral photodynamic therapy.


Asunto(s)
Neoplasias , Fotoquimioterapia , Catepsina B/uso terapéutico , Línea Celular Tumoral , Dinitrofluorobenceno/análogos & derivados , Receptores ErbB , Glutatión/química , Humanos , Indoles/química , Neoplasias/patología , Péptidos/uso terapéutico , Péptidos Cíclicos/uso terapéutico , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Oxígeno Singlete/química
14.
J Nanobiotechnology ; 20(1): 189, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35418077

RESUMEN

Extracellular vesicles (EVs), spherical biological vesicles, mainly contain nucleic acids, proteins, lipids and metabolites for biological information transfer between cells. Microparticles (MPs), a subtype of EVs, directly emerge from plasma membranes, and have gained interest in recent years. Specific cell stimulation conditions, such as ultraviolet and X-rays irradiation, can induce the release of MPs, which are endowed with unique antitumor functionalities, either for therapeutic vaccines or as direct antitumor agents. Moreover, the size of MPs (100-1000 nm) and their spherical structures surrounded by a lipid bilayer membrane allow MPs to function as delivery vectors for bioactive antitumor compounds, with favorable phamacokinetic behavior, immunostimulatory activity and biological function, without inherent carrier-specific toxic side effects. In this review, the mechanisms underlying MP biogenesis, factors that influence MP production, properties of MP membranes, size, composition and isolation methods of MPs are discussed. Additionally, the applications and mechanisms of action of MPs, as well as the main hurdles for their applications in cancer management, are introduced.


Asunto(s)
Antineoplásicos , Micropartículas Derivadas de Células , Vesículas Extracelulares , Neoplasias , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Micropartículas Derivadas de Células/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
15.
Anal Chem ; 94(3): 1901-1909, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35019258

RESUMEN

Surface biotinylation has been widely adapted in profiling the cellular proteome associated with the plasma membrane. However, the workflow is subject to interference from the cytoplasmic biotin-associated proteins that compete for streptavidin-binding during purification. Here we established a bioorthogonal conjugation-assisted purification (BCAP) workflow that utilizes the Staudinger chemoselective ligation to label and isolate surface-associated proteins while minimizing the binding of endogenous biotin-associated proteins. Label-free quantitative proteomics demonstrated that BCAP is efficient in isolating cell surface proteins with excellent reproducibility. Subsequently, we applied BCAP to compare the surface proteome of proliferating and senescent mouse embryonic fibroblasts (MEFs). Among the results, EHD2 was identified and validated as a novel protein that is enhanced at the cell surface of senescent MEFs. We expect that BCAP will have broad applications in profiling cell surface proteomes in the future.


Asunto(s)
Proteoma , Proteómica , Animales , Biotinilación , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Fibroblastos/metabolismo , Espectrometría de Masas , Ratones , Proteoma/metabolismo , Proteómica/métodos , Reproducibilidad de los Resultados
16.
J Med Chem ; 64(23): 17455-17467, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34846143

RESUMEN

Two dual stimuli-activated photosensitizers were developed, in which two or three glutathione (GSH)-responsive 2,4-dinitrobenzenesulfonate (DNBS)-substituted zinc(II) phthalocyanine units were connected via one or two cathepsin B-cleavable Gly-Phe-Leu-Gly peptide linker(s). These dimeric and trimeric phthalocyanines were fully quenched in the native form due to the photoinduced electron transfer to the DNBS substituents and the self-quenching of the phthalocyanine units. In the presence of GSH and cathepsin B, or upon internalization into A549 and HepG2 cancer cells, these probes were activated through the release of free phthalocyanine units. The intracellular fluorescence intensity was increased upon post-incubation with GSH ester or reduced upon pre-treatment with a cathepsin B inhibitor. Upon light irradiation, these photosensitizers became highly cytotoxic with IC50 values of 0.21-0.39 µM. The photocytotoxicity was also dependent on the intracellular GSH and cathepsin B levels. The results showed that these conjugates could serve as smart photosensitizers for targeted photodynamic therapy.


Asunto(s)
Antineoplásicos/farmacología , Biopolímeros/metabolismo , Catepsina B/metabolismo , Glutatión/metabolismo , Isoindoles/metabolismo , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Línea Celular Tumoral , Fluorescencia , Humanos
17.
Biomater Sci ; 9(14): 4936-4951, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34075948

RESUMEN

A zinc(ii) phthalocyanine (ZnPc) was conjugated to doxorubicin (Dox) via an acid-labile hydrazone linker. The resulting ZnPc-Dox conjugate was then encapsulated into polymeric micelles formed through self-assembly of a block copolymer of poly(ethylene glycol) and poly(d,l-lactide) both in the absence and presence of the hypoxia-activated prodrug tirapazamine (TPZ) to give ZnPc-Dox@micelles and ZnPc-Dox/TPZ@micelles respectively. These polymeric micelles exhibited an excellent stability in aqueous media, but underwent disassembly in an acidic environment. Upon internalisation into HT29 human colorectal carcinoma cells, fluorescence due to ZnPc and Dox could be observed in the cytoplasm and nucleus respectively for both nanosystems. This observation suggested the disassembly of the polymeric micelles and the cleavage of the hydrazone linker in ZnPc-Dox in the acidic intracellular compartments. These micelles were slightly cytotoxic against HT29 cells in the dark due to the chemotherapeutic effect of Dox and/or TPZ. Upon light irradiation, ZnPc-Dox@micelles showed higher cytotoxicity. The IC50 value under a normoxic condition (0.35 µM based on ZnPc-Dox) was significantly lower than that under hypoxia (>1 µM). With an additional therapeutic component, ZnPc-Dox/TPZ@micelles exhibited higher photocytotoxicity with IC50 values of 0.20 µM and 0.78 µM under normoxia and hypoxia respectively. It is believed that the photodynamic action of this nanosystem consumed the intracellular oxygen and hence triggered the hypoxia-mediated chemotherapeutic action of TPZ. The multimodal antitumor effects of these polymeric micelles were also validated on HT29 tumour-bearing nude mice.


Asunto(s)
Micelas , Neoplasias , Animales , Doxorrubicina/farmacología , Hipoxia , Indoles , Isoindoles , Ratones , Ratones Desnudos , Polietilenglicoles , Tirapazamina
18.
Curr Opin Biotechnol ; 69: 153-161, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33476937

RESUMEN

Although nanomedicines have provided promising anti-tumor effects in cancer animal models, their clinical success remains limited. One of the most significant barriers in the clinical translation of nanomedicines is that they consist of multiple components, each of which may have different toxicities and therapeutic effects. Intravital imaging provides high spatial and temporal resolution for visualizing nanomedicine-mediated interactions between immune cells and tumor cells in real-time. Intravital imaging can facilitate the in vivo evaluation of the properties and effects of nanomedicines, such as their ability to cross the tumor vasculature, specifically eliminate the cancer cells, and modulate the immune cells found in the tumor microenvironment (TME). Thus, intravital imaging can provide direct evidence of nanomedicine's intravital behavior to better understand mechanism and accelerate clinical translation. In this review, we summarize several applications and latest advances in intravital imaging in nanomedicine-assisted anti-cancer therapy and discuss future perspectives in the field.


Asunto(s)
Nanomedicina , Neoplasias , Animales , Inmunoterapia , Microscopía Intravital , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
19.
Front Immunol ; 12: 832942, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35111169

RESUMEN

Cancer immunotherapy can boost the immune response of patients to eliminate tumor cells and suppress tumor metastasis and recurrence. However, immunotherapy resistance and the occurrence of severe immune-related adverse effects are clinical challenges that remain to be addressed. The tumor microenvironment plays a crucial role in the therapeutic efficacy of cancer immunotherapy. Injectable hydrogels have emerged as powerful drug delivery platforms offering good biocompatibility and biodegradability, minimal invasion, convenient synthesis, versatility, high drug-loading capacity, controlled drug release, and low toxicity. In this review, we summarize the application of injectable hydrogels as a unique platform for targeting the immunosuppressive tumor microenvironment.


Asunto(s)
Hidrogeles , Huésped Inmunocomprometido/efectos de los fármacos , Terapia Molecular Dirigida , Neoplasias/inmunología , Neoplasias/terapia , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Animales , Antineoplásicos/administración & dosificación , Biomarcadores de Tumor , Estudios Clínicos como Asunto , Terapia Combinada/efectos adversos , Terapia Combinada/métodos , Preparaciones de Acción Retardada , Sistemas de Liberación de Medicamentos , Evaluación Preclínica de Medicamentos , Humanos , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Terapia Molecular Dirigida/métodos , Neoplasias/patología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/inmunología , Resultado del Tratamiento , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo
20.
Acta Biomater ; 116: 329-343, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32890751

RESUMEN

By using an oil-in-water single emulsion method, a series of multifunctional hybrid nanoparticles (NPs) were prepared which consisted of a core of poly(lactic-co-glycolic acid) (PLGA) with a lipoid shell of n-hexadecylamine-substituted hyaluronic acid (HA), encapsulating a zinc(II) phthalocyanine-based photosensitizer (ZnPc). As determined by laser light scattering, these hybrid NPs labeled as ZnPc@PLGA-HA NPs possessed a hydrodynamic diameter of 280 nm and a surface charge of -30 mV, showing high stability in serum. The Q-band absorption of ZnPc exhibited a large red-shift from 674 nm for free ZnPc in dimethylsulfoxide to 832 nm for this nanosystem in water. Upon light irradiation at 808 nm, the encapsulated ZnPc induced a strong photothermal effect instead of photodynamic action, which is usually observed for ZnPc-containing NPs. The tumor-targeting effect of these NPs due to the HA coating was investigated against the human colorectal adenocarcinoma HT29 cells and human lung carcinoma A549 cells, both of which overexpress cluster determinant 44 (CD44) receptors, using the CD44-negative human normal hepatic LO2 cells as a negative control. The photothermal cell-killing effect of these NPs was significantly higher for the two CD44-positive cell lines than that for the negative control. Their in vivo photothermal efficacy was also examined on HT29 tumor-bearing nude mice. Upon irradiation, the NPs caused significant temperature increase at the tumor site and ablation of the tumor. The results showed that these multifunctional NPs could serve as an effective photothermal agent for targeted photothermal therapy. Statement of significance Phthalocyanines are well-known photosensitizers for photodynamic therapy. By encapsulating these molecules into various nanoplatforms, a range of multifunctional photosensitizing systems have been developed for cancer therapy. In this study, we have demonstrated that by careful selection of phthalocyanines and the nanocarriers, as well as the self-assembly and encapsulation methods, the encapsulated phthalocyanine molecules could switch the photoinduced action from photodynamic therapy to photothermal therapy as a result of the enhanced aggregation of the macrocyclic molecules in the nanoparticles. The unique packing of the molecules also resulted in a large red-shift of the Q-band absorption to 832 nm, facilitating the in vitro and in vivo photothermal treatment.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Animales , Línea Celular Tumoral , Glicoles , Ácido Hialurónico/farmacología , Indoles , Isoindoles , Ratones , Ratones Desnudos , Compuestos Organometálicos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Zinc , Compuestos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...