Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Rev ; 123(5): 1843-1888, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36260771

RESUMEN

The building sector, including building operations and materials, was responsible for the emission of ∼11.9 gigatons of global energy-related CO2 in 2020, accounting for 37% of the total CO2 emissions, the largest share among different sectors. Lowering the carbon footprint of buildings requires the development of carbon-storage materials as well as novel designs that could enable multifunctional components to achieve widespread applications. Wood is one of the most abundant biomaterials on Earth and has been used for construction historically. Recent research breakthroughs on advanced engineered wood products epitomize this material's tremendous yet largely untapped potential for addressing global sustainability challenges. In this review, we explore recent developments in chemically modified wood that will produce a new generation of engineered wood products for building applications. Traditionally, engineered wood products have primarily had a structural purpose, but this review broadens the classification to encompass more aspects of building performance. We begin by providing multiscale design principles of wood products from a computational point of view, followed by discussion of the chemical modifications and structural engineering methods used to modify wood in terms of its mechanical, thermal, optical, and energy-related performance. Additionally, we explore life cycle assessment and techno-economic analysis tools for guiding future research toward environmentally friendly and economically feasible directions for engineered wood products. Finally, this review highlights the current challenges and perspectives on future directions in this research field. By leveraging these new wood-based technologies and analysis tools for the fabrication of carbon-storage materials, it is possible to design sustainable and carbon-negative buildings, which could have a significant impact on mitigating climate change.

2.
Science ; 374(6566): 465-471, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34672741

RESUMEN

Wood is a sustainable structural material, but it cannot be easily shaped while maintaining its mechanical properties. We report a processing strategy that uses cell wall engineering to shape flat sheets of hardwood into versatile three-dimensional (3D) structures. After breaking down wood's lignin component and closing the vessels and fibers by evaporating water, we partially re-swell the wood in a rapid water-shock process that selectively opens the vessels. This forms a distinct wrinkled cell wall structure that allows the material to be folded and molded into desired shapes. The resulting 3D-molded wood is six times stronger than the starting wood and comparable to widely used lightweight materials such as aluminum alloys. This approach widens wood's potential as a structural material, with lower environmental impact for buildings and transportation applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...