Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Ther ; 27(8): 1372-1388, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31253581

RESUMEN

Myotonic dystrophy type 1 (DM1) is caused by a CTG repeat expansion located in the 3' UTR of the DMPK gene. Expanded DMPK transcripts aggregate into nuclear foci and alter the function of RNA-binding proteins, leading to defects in the alternative splicing of numerous pre-mRNAs. To date, there is no curative treatment for DM1. Here we investigated a gene-editing strategy using the CRISPR-Cas9 system from Staphylococcus aureus (Sa) to delete the CTG repeats in the human DMPK locus. Co-expression of SaCas9 and selected pairs of single-guide RNAs (sgRNAs) in cultured DM1 patient-derived muscle line cells carrying 2,600 CTG repeats resulted in targeted DNA deletion, ribonucleoprotein foci disappearance, and correction of splicing abnormalities in various transcripts. Furthermore, a single intramuscular injection of recombinant AAV vectors expressing CRISPR-SaCas9 components in the tibialis anterior muscle of DMSXL (myotonic dystrophy mouse line carrying the human DMPK gene with >1,000 CTG repeats) mice decreased the number of pathological RNA foci in myonuclei. These results establish the proof of concept that genome editing of a large trinucleotide expansion is feasible in muscle and may represent a useful strategy to be further developed for the treatment of myotonic dystrophy.


Asunto(s)
Edición Génica , Proteína Quinasa de Distrofia Miotónica/genética , ARN Nuclear , Expansión de Repetición de Trinucleótido , Empalme Alternativo , Animales , Secuencia de Bases , Sistemas CRISPR-Cas , Núcleo Celular , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Expresión Génica , Marcación de Gen , Vectores Genéticos/genética , Humanos , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Miotónica/genética , Distrofia Miotónica/terapia , ARN Guía de Kinetoplastida , Transducción Genética
2.
Proc Natl Acad Sci U S A ; 113(50): 14432-14437, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27911767

RESUMEN

Mutations in the gene encoding the phosphoinositide 3-phosphatase myotubularin (MTM1) are responsible for a pediatric disease of skeletal muscle named myotubular myopathy (XLMTM). Muscle fibers from MTM1-deficient mice present defects in excitation-contraction (EC) coupling likely responsible for the disease-associated fatal muscle weakness. However, the mechanism leading to EC coupling failure remains unclear. During normal skeletal muscle EC coupling, transverse (t) tubule depolarization triggers sarcoplasmic reticulum (SR) Ca2+ release through ryanodine receptor channels gated by conformational coupling with the t-tubule voltage-sensing dihydropyridine receptors. We report that MTM1 deficiency is associated with a 60% depression of global SR Ca2+ release over the full range of voltage sensitivity of EC coupling. SR Ca2+ release in the diseased fibers is also slower than in normal fibers, or delayed following voltage activation, consistent with the contribution of Ca2+-gated ryanodine receptors to EC coupling. In addition, we found that SR Ca2+ release is spatially heterogeneous within myotubularin-deficient muscle fibers, with focally defective areas recapitulating the global alterations. Importantly, we found that pharmacological inhibition of phosphatidylinositol 3-kinase (PtdIns 3-kinase) activity rescues the Ca2+ release defects in isolated muscle fibers and increases the lifespan and mobility of XLMTM mice, providing proof of concept for the use of PtdIns 3-kinase inhibitors in myotubular myopathy and suggesting that unbalanced PtdIns 3-kinase activity plays a critical role in the pathological process.


Asunto(s)
Señalización del Calcio/fisiología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia , Androstadienos/farmacología , Animales , Señalización del Calcio/efectos de los fármacos , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Acoplamiento Excitación-Contracción/efectos de los fármacos , Acoplamiento Excitación-Contracción/fisiología , Técnicas In Vitro , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/fisiología , Miopatías Estructurales Congénitas/tratamiento farmacológico , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/fisiopatología , Técnicas de Placa-Clamp , Proteínas Tirosina Fosfatasas no Receptoras/genética , Wortmanina
3.
BMC Microbiol ; 14: 327, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25539806

RESUMEN

BACKGROUND: The human pathogen Vibrio cholerae normally enters the developmental program of natural competence for transformation after colonizing chitinous surfaces. Natural competence is regulated by at least three pathways in this organism: chitin sensing/degradation, quorum sensing and carbon catabolite repression (CCR). The cyclic adenosine monophosphate (cAMP) receptor protein CRP, which is the global regulator of CCR, binds to regulatory DNA elements called CRP sites when in complex with cAMP. Previous studies in Haemophilus influenzae suggested that the CRP protein binds competence-specific CRP-S sites under competence-inducing conditions, most likely in concert with the master regulator of transformation Sxy/TfoX. RESULTS: In this study, we investigated the regulation of the competence genes qstR and comEA as an example of the complex process that controls competence gene activation in V. cholerae. We identified previously unrecognized putative CRP-S sites upstream of both genes. Deletion of these motifs significantly impaired natural transformability. Moreover, site-directed mutagenesis of these sites resulted in altered gene expression. This altered gene expression also correlated directly with protein levels, bacterial capacity for DNA uptake, and natural transformability. CONCLUSIONS: Based on the data provided in this study we suggest that the identified sites are important for the expression of the competence genes qstR and comEA and therefore for natural transformability of V. cholerae even though the motifs might not reflect bona fide CRP-S sites.


Asunto(s)
Competencia de la Transformación por ADN/genética , Regulación Bacteriana de la Expresión Génica/genética , Elementos Reguladores de la Transcripción/genética , Transformación Bacteriana/genética , Vibrio cholerae/genética , Proteínas Bacterianas/genética , Represión Catabólica/genética , Quitina/metabolismo , AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/genética , Mutagénesis Sitio-Dirigida/métodos , Percepción de Quorum/genética
4.
Nucleic Acids Res ; 41(6): 3644-58, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23382174

RESUMEN

The human pathogen Vibrio cholerae is an aquatic bacterium associated with zooplankton and their chitinous exoskeletons. On chitinous surfaces, V. cholerae initiates a developmental programme, known as natural competence, to mediate transformation, which is a mode of horizontal gene transfer. Competence facilitates the uptake of free DNA and recombination into the bacterial genome. Recent studies have indicated that chitin surfaces are required, but not sufficient to induce competence. Two additional regulatory pathways, i.e. catabolite repression and quorum sensing (QS), are components of the regulatory network that controls natural competence in V. cholerae. In this study, we investigated the link between chitin induction and QS. We show that the major regulators of these two pathways, TfoX and HapR, are both involved in the activation of a gene encoding a transcriptional regulator of the LuxR-type family, which we named QS and TfoX-dependent regulator (QstR). We demonstrate that HapR binds the promoter of qstR in a site-specific manner, indicating a role for HapR as an activator of qstR. In addition, epistasis experiments indicate that QstR compensates for the absence of HapR. We also provide evidence that QstR is required for the proper expression of a small but essential subset of competence genes and propose a new regulatory model in which QstR links chitin-induced TfoX activity with QS.


Asunto(s)
Quitina , Regulación Bacteriana de la Expresión Génica , Percepción de Quorum/genética , Transformación Bacteriana , Vibrio cholerae/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Sitios de Unión , Competencia de la Transformación por ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regiones Promotoras Genéticas , Transactivadores/metabolismo
5.
PLoS Genet ; 8(6): e1002778, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22737089

RESUMEN

The human pathogen Vibrio cholerae is an aquatic bacterium frequently encountered in rivers, lakes, estuaries, and coastal regions. Within these environmental reservoirs, the bacterium is often found associated with zooplankton and more specifically with their chitinous exoskeleton. Upon growth on such chitinous surfaces, V. cholerae initiates a developmental program termed "natural competence for genetic transformation." Natural competence for transformation is a mode of horizontal gene transfer in bacteria and contributes to the maintenance and evolution of bacterial genomes. In this study, we investigated competence gene expression within this organism at the single cell level. We provide evidence that under homogeneous inducing conditions the majority of the cells express competence genes. A more heterogeneous expression pattern was observable on chitin surfaces. We hypothesize that this was the case due to the heterogeneity around the chitin surface, which might vary extensively with respect to chitin degradation products and autoinducers; these molecules contribute to competence induction based on carbon catabolite repression and quorum-sensing pathways, respectively. Therefore, we investigated the contribution of these two signaling pathways to natural competence in detail using natural transformation assays, transcriptional reporter fusions, quantitative RT-PCR, and immunological detection of protein levels using Western blot analysis. The results illustrate that all tested competence genes are dependent on the transformation regulator TfoX. Furthermore, intracellular cAMP levels play a major role in natural transformation. Finally, we demonstrate that only a minority of genes involved in natural transformation are regulated in a quorum-sensing-dependent manner and that these genes determine the fate of the surrounding DNA. We conclude with a model of the regulatory circuit of chitin-induced natural competence in V. cholerae.


Asunto(s)
Quitina , Competencia de la Transformación por ADN , Regulación Bacteriana de la Expresión Génica , Vibrio cholerae , Animales , Biopelículas/crecimiento & desarrollo , Represión Catabólica/genética , Quitina/genética , Quitina/metabolismo , Competencia de la Transformación por ADN/genética , Transferencia de Gen Horizontal , Genoma Bacteriano , Humanos , Percepción de Quorum/genética , Transducción de Señal , Análisis de la Célula Individual , Vibrio cholerae/genética , Vibrio cholerae/crecimiento & desarrollo , Zooplancton/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...