Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
Livers ; 3(2): 310-321, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38037613

RESUMEN

Tyrosine kinase inhibitors (TKIs) are increasingly popular drugs used to treat more than a dozen different diseases, including some forms of cancer. Despite having fewer adverse effects than traditional chemotherapies, they are not without risks. Liver injury is a particular concern. Of the FDA-approved TKIs, approximately 40% cause hepatotoxicity. However, little is known about the underlying pathophysiology. The leading hypothesis is that TKIs are converted by cytochrome P450 3A4 (CYP3A4) to reactive metabolites that damage proteins. Indeed, there is strong evidence for this bioactivation of TKIs in in vitro reactions. However, the actual toxic effects are underexplored. Here, we measured the cytotoxicity of several TKIs in primary mouse hepatocytes, HepaRG cells, and HepG2 cells with and without CYP3A4 modulation. To our surprise, the data indicate that CYP3A4 increases resistance to sorafenib and lapatinib hepatotoxicity. The results have implications for the mechanism of toxicity of these drugs in patients and underline the importance of selecting an appropriate experimental model.

2.
Behav Brain Res ; 444: 114335, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36804441

RESUMEN

The NAD(+)-dependent deacetylase SIRT3 is a proven mitochondrial metabolic stress sensor. It has been linked to the regulation of the mitochondrial acetylome and activation of several metabolic enzymes (e.g., manganese superoxide dismutase [MnSOD]) to protect mitochondrial function and redox homeostasis, which are vital for survival, excitability, and synaptic signaling of neurons mediating short- and long-term memory formation as well as retention. Eighteen-month-old male and female wild-type (WT) and Sirt3-/- mice were behaviorally tested for hippocampus-dependent cognitive performance in a Morris water maze paradigm. Cognitive impairment was displayed during the probe trial by female and male Sirt3-/- mice but not WT mice. Upon sacrifice, brains were fixed, and morphological assessments were conducted on hippocampal tissues. Both female and male Sirt3-/- mice demonstrated impaired spatial memory retention implying that SIRT3 plays a role in long-term memory function. Golgi-staining studies revealed decreased dendritic arborization and dendritic length in the hippocampi of male Sirt3-/- compared to WT animals. Sirt3 deletion significantly increased NR1, NR2A, and NR2B expression in the hippocampus of female mice only. Enzymatic activity of MnSOD, a major mitochondrial deacetylation target of SIRT3, was significantly decreased in both female and male Sirt3-/- mice. Similarly, both female and male Sirt3-/- mice demonstrated a significant decrease in their respiratory control ratio during Complex I-driven respiration, which was apparent only in female Sirt3-/- mice during Complex II-driven respiration.


Asunto(s)
Sirtuina 3 , Ratones , Masculino , Femenino , Animales , Sirtuina 3/metabolismo , Estrés Oxidativo/fisiología , Modelos Animales de Enfermedad , Antioxidantes/metabolismo , Superóxido Dismutasa/metabolismo , Hipocampo/metabolismo , Cognición , Animales Salvajes/metabolismo , Mitocondrias/metabolismo
3.
Front Toxicol ; 4: 936149, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36591540

RESUMEN

Hepatocellular carcinoma (HCC) is both a devastating and common disease. Every year in the United States, about 24,500 men and 10,000 women are diagnosed with HCC, and more than half of those diagnosed patients die from this disease. Thus far, conventional therapeutics have not been successful for patients with HCC due to various underlying comorbidities. Poor survival rate and high incidence of recurrence after therapy indicate that the differences between the redox environments of normal surrounding liver and HCC are valuable targets to improve treatment efficacy. Parthenolide (PTL) is a naturally found therapeutic with anti-cancer and anti-inflammatory properties. PTL can alter HCC's antioxidant environment through thiol modifications leaving tumor cells sensitive to elevated reactive oxygen species (ROS). Investigating the link between altered thiol mechanism and increased sensitivity to iron-mediated lipid peroxidation will allow for improved treatment of HCC. HepG2 (human) and McARH7777 (rat) HCC cells treated with PTL with increasing concentrations decrease cell viability and clonogenic efficiency in vitro. PTL increases glutathione (GSH) oxidation rescued by the addition of a GSH precursor, N-acetylcysteine (NAC). In addition, this elevation in thiol oxidation results in an overall increase in mitochondrial dysfunction. To elucidate if cell death is through lipid peroxidation, using a lipid peroxidation sensor indicated PTL increases lipid oxidation levels after 6 h. Additionally, western blotting reveals glutathione peroxidase 4 (GPx4) protein levels decrease after treatment with PTL suggesting cells are incapable of preventing lipid peroxidation after exposure to PTL. An elevation in lipid peroxidation will lead to a form of cell death known as ferroptosis. To further establish ferroptosis as a critical mechanism of death for HCC in vitro, the addition of ferrostatin-1 combined with PTL demonstrates a partial recovery in a colony survival assay. This study reveals that PTL can induce tumor cell death through elevations in intracellular oxidation, leaving cells sensitive to ferroptosis.

4.
Oncotarget ; 11(28): 2686-2701, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32733642

RESUMEN

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. New animal models that faithfully recapitulate human HCC phenotypes are required to address unmet clinical needs and advance standard-of-care therapeutics. This study utilized the Oncopig Cancer Model to develop a translational porcine HCC model which can serve as a bridge between murine studies and human clinical practice. Reliable development of Oncopig HCC cell lines was demonstrated through hepatocyte isolation and Cre recombinase exposure across 15 Oncopigs. Oncopig and human HCC cell lines displayed similar cell cycle lengths, alpha-fetoprotein production, arginase-1 staining, chemosusceptibility, and drug metabolizing enzyme expression. The ability of Oncopig HCC cells to consistently produce tumors in vivo was confirmed via subcutaneous (SQ) injection into immunodeficient mice and Oncopigs. Reproducible development of intrahepatic tumors in an alcohol-induced fibrotic microenvironment was achieved via engraftment of SQ tumors into fibrotic Oncopig livers. Whole-genome sequencing demontrated intrahepatic tumor tissue resembled human HCC at the genomic level. Finally, Oncopig HCC cells are amenable to gene editing for development of personalized HCC tumors. This study provides a novel, clinically-relevant porcine HCC model which holds great promise for improving HCC outcomes through testing of novel therapeutic approaches to accelerate and enhance clinical trials.

5.
Antioxidants (Basel) ; 9(5)2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403251

RESUMEN

In patients with abdominal region cancers, ionizing radiation (IR)-induced long-term liver injury is a major limiting factor in the use of radiotherapy. Previously, the major mitochondrial deacetylase, sirtuin 3 (SIRT3), has been implicated to play an important role in the development of acute liver injury after total body irradiation but no studies to date have examined the role of SIRT3 in liver's chronic response to radiation. In the current study, ten-month-old Sirt3-/- and Sirt3+/+ male mice received 24 Gy radiation targeted to liver. Six months after exposure, irradiated Sirt3-/- mice livers demonstrated histopathological elevations in inflammatory infiltration, the loss of mature bile ducts and higher DNA damage (TUNEL) as well as protein oxidation (3-nitrotyrosine). In addition, increased expression of inflammatory chemokines (IL-6, IL-1ß, TGF-ß) and fibrotic factors (Procollagen 1, α-SMA) were also measured in Sirt3-/- mice following 24 Gy IR. The alterations measured in enzymatic activities of catalase, glutathione peroxidase, and glutathione reductase in the livers of irradiated Sirt3-/- mice also implied that hydrogen peroxide and hydroperoxide sensitive signaling cascades in the absence of SIRT3 might contribute to the IR-induced long-term liver injury.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...