Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Pharm Biomed Anal ; 192: 113650, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33065403

RESUMEN

Identification of molecular liabilities and implementation of mitigation strategies are key aspects that need to be considered by pharmaceutical companies developing therapeutic proteins. In the field of monoclonal antibodies, an efficient and streamlined process known as developability assessment is used for the selection of the "fittest" candidate. Other protein modalities, have in most cases only a limited number of possible candidates, requiring a paradigm change to a concept of candidate enabling. The assessment of liabilities at early project phases with the possibility to re-engineer candidates becomes essential for the success of these projects. Each protein possesses a unique stability profile resulting from the interplay of conformational, colloidal, chemical and physical stability attributes. All of these attributes strongly depend on external factors. Conformational and colloidal stability profiles of three non-immunoglobulin domain based proteins, namely Carbonic anhydrase, Ovalbumin and Thyroglobulin, and of two monoclonal antibodies were assessed in dependence of solution pH, ionic strength and varying buffering agents. The impact of screened external factors on proteins' stability attributes varied significantly, indicating presence of molecule specific liabilities. Screening of such a broad space of conditions at early project phases is only feasible using low-material consuming, high-throughput analytical methods as exemplified in this study.


Asunto(s)
Anticuerpos Monoclonales , Concentración Osmolar , Estabilidad Proteica
2.
FEBS J ; 287(8): 1537-1553, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31605669

RESUMEN

Sirohaem is a modified tetrapyrrole and a key prosthetic group of several enzymes involved in nitrogen and sulfur metabolisms. This work shows that Staphylococcus aureus produces sirohaem through a pathway formed by three independent enzymes. Of the two putative sirohaem synthases encoded in the S. aureus genome and annotated as cysG, one is herein shown to be a uroporphyrinogen III methyltransferase that converts uroporphyrinogen III to precorrin-2, and was renamed as UroM. The second cysG gene encodes a precorrin-2 dehydrogenase that converts precorrin-2 to sirohydrochlorin, and was designated as P2D. The last step was found to be performed by the gene nirR that, in fact, codes for a protein with sirohydrochlorin ferrochelatase activity, labelled as ShfC. Additionally, site-directed mutagenesis studies of S. aureus ShfC revealed that residues H22 and H87, which are predicted by homology modelling to be located at the active site, control the ferrochelatase activity. Within bacteria, sirohaem synthesis may occur via one, two or three enzymes, and we propose to name the correspondent pathways as Types 1, 2 and 3, respectively. A phylogenetic analysis revealed that Type 1 is the most used pathway in Gammaproteobacteria and Streptomycetales, Type 2 predominates in Fibrobacteres and Vibrionales, and Type 3 predominates in Firmicutes of the Bacillales order. Altogether, we concluded that the current distribution of sirohaem pathways within bacteria, which changes at the genus or species level and within taxa, seems to be the result of evolutionary multiple fusion/fission events.


Asunto(s)
Vías Biosintéticas , Hemo/análogos & derivados , Staphylococcus aureus/metabolismo , Secuencia de Aminoácidos , Hemo/biosíntesis , Metiltransferasas/genética , Metiltransferasas/metabolismo , Modelos Moleculares , Staphylococcus aureus/enzimología
3.
Chem Sci ; 9(34): 6899-6903, 2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30310622

RESUMEN

Using machine learning, targets were identified for ß-lapachone. Resorting to biochemical assays, ß-lapachone was validated as a potent, ligand efficient, allosteric and reversible modulator of 5-lipoxygenase (5-LO). Moreover, we provide a rationale for 5-LO modulation and show that inhibition of 5-LO is relevant for the anticancer activity of ß-lapachone. This work demonstrates the power of machine intelligence to deconvolute complex phenotypes, as an alternative and/or complement to chemoproteomics and as a viable general approach for systems pharmacology studies.

4.
Mol Microbiol ; 109(3): 385-400, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29989674

RESUMEN

Haem is an essential cofactor in central metabolic pathways in the vast majority of living systems. Prokaryotes acquire haem via haem biosynthesis pathways, and some also utilize haem uptake systems, yet it remains unclear how they balance haem requirements with the paradox that free haem is toxic. Here, using the model pathogen Staphylococcus aureus, we report that IsdG, one of two haem oxygenase enzymes in the haem uptake system, inhibits the formation of haem via the internal haem biosynthesis route. More specifically, we show that IsdG decreases the activity of ferrochelatase and that the two proteins interact both in vitro and in vivo. Further, a bioinformatics analysis reveals that a significant number of haem biosynthesis pathway containing organisms possess an IsdG-homologue and that those with both biosynthesis and uptake systems have at least two haem oxygenases. We conclude that IsdG-like proteins control intracellular haem levels by coupling the two pathways. IsdG is thus a target for the treatment of S. aureusinfections.


Asunto(s)
Hemo/biosíntesis , Oxigenasas/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/enzimología , Animales , Línea Celular , Ferroquelatasa/genética , Ferroquelatasa/metabolismo , Genes Bacterianos/genética , Humanos , Hierro/metabolismo , Macrófagos/microbiología , Ratones , Oxigenasas/genética , ARN Bacteriano/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Staphylococcus aureus/genética
5.
Environ Microbiol ; 19(1): 106-118, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27486032

RESUMEN

The sulfate-reducing bacteria of the Desulfovibrio genus make three distinct modified tetrapyrroles, haem, sirohaem and adenosylcobamide, where sirohydrochlorin acts as the last common biosynthetic intermediate along the branched tetrapyrrole pathway. Intriguingly, D. vulgaris encodes two sirohydrochlorin chelatases, CbiKP and CbiKC , that insert cobalt/iron into the tetrapyrrole macrocycle but are thought to be distinctly located in the periplasm and cytoplasm respectively. Fusing GFP onto the C-terminus of CbiKP confirmed that the protein is transported to the periplasm. The structure-function relationship of CbiKP was studied by constructing eleven site-directed mutants and determining their chelatase activities, oligomeric status and haem binding abilities. Residues His154 and His216 were identified as essential for metal-chelation of sirohydrochlorin. The tetrameric form of the protein is stabilized by Arg54 and Glu76, which form hydrogen bonds between two subunits. His96 is responsible for the binding of two haem groups within the main central cavity of the tetramer. Unexpectedly, CbiKP is shown to bind two additional haem groups through interaction with His103. Thus, although still retaining cobaltochelatase activity, the presence of His96 and His103 in CbiKP , which are absent from all other known bacterial cobaltochelatases, has evolved CbiKP a new function as a haem binding protein permitting it to act as a potential haem chaperone or transporter.


Asunto(s)
Proteínas Bacterianas/genética , Desulfovibrio vulgaris/enzimología , Desulfovibrio vulgaris/genética , Hemo/análogos & derivados , Liasas/genética , Tetrapirroles/metabolismo , Uroporfirinas/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Desulfovibrio vulgaris/metabolismo , Ferroquelatasa/genética , Ferroquelatasa/metabolismo , Hemo/metabolismo , Proteínas de Unión al Hemo , Hemoproteínas/genética , Histidina/metabolismo
6.
Mol Microbiol ; 97(3): 472-87, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25908396

RESUMEN

Haem is a life supporting molecule that is ubiquitous in all major kingdoms. In Staphylococcus aureus, the importance of haem is highlighted by the presence of systems both for the exogenous acquisition and endogenous synthesis of this prosthetic group. In this work, we show that in S. aureus the formation of haem involves the conversion of coproporphyrinogen III into coproporphyrin III by coproporphyrin synthase HemY, insertion of iron into coproporphyrin III via ferrochelatase HemH, and oxidative decarboxylation of Fe-coproporphyrin III into protohaem IX by Fe-coproporphyrin oxidase/dehydrogenase HemQ. Together, this route represents a transitional pathway between the classic pathway and the more recently acknowledged alternative biosynthesis machinery. The role of the haem biosynthetic pathway in the survival of the bacterium was investigated by testing for inhibitors of HemY. Analogues of acifluorfen are shown to inhibit the flavin-containing HemY, highlighting this protein as a suitable target for the development of drugs against S. aureus. Moreover, the presence of a transitional pathway for haem biosynthesis within many Gram positive pathogenic bacteria suggests that this route has the potential not only for the design of antimicrobials but also for the selective discrimination between bacteria operating different routes to the biosynthesis of haem.


Asunto(s)
Vías Biosintéticas/genética , Hemo/biosíntesis , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Inhibidores Enzimáticos/metabolismo , Enzimas/genética , Enzimas/metabolismo , Viabilidad Microbiana
7.
Mol Microbiol ; 93(2): 247-61, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24865947

RESUMEN

Some bacteria and archaea synthesize haem by an alternative pathway, which involves the sequestration of sirohaem as a metabolic intermediate rather than as a prosthetic group. Along this pathway the two acetic acid side-chains attached to C12 and C18 are decarboxylated by sirohaem decarboxylase, a heterodimeric enzyme composed of AhbA and AhbB, to give didecarboxysirohaem. Further modifications catalysed by two related radical SAM enzymes, AhbC and AhbD, transform didecarboxysirohaem into Fe-coproporphyrin III and haem respectively. The characterization of sirohaem decarboxylase is reported in molecular detail. Recombinant versions of Desulfovibrio desulfuricans, Desulfovibrio vulgaris and Methanosarcina barkeri AhbA/B have been produced and their physical properties compared. The D. vulgaris and M. barkeri enzyme complexes both copurify with haem, whose redox state influences the activity of the latter. The kinetic parameters of the D. desulfuricans enzyme have been determined, the enzyme crystallized and its structure has been elucidated. The topology of the enzyme reveals that it shares a structural similarity to the AsnC/Lrp family of transcription factors. The active site is formed in the cavity between the two subunits and a AhbA/B-product complex with didecarboxysirohaem has been obtained. A mechanism for the decarboxylation of the kinetically stable carboxyl groups is proposed.


Asunto(s)
Carboxiliasas/química , Carboxiliasas/metabolismo , Desulfovibrio desulfuricans/enzimología , Desulfovibrio vulgaris/enzimología , Hemo/análogos & derivados , Hemo/biosíntesis , Methanosarcina barkeri/enzimología , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/aislamiento & purificación , Proteínas Arqueales/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Biocatálisis , Carboxiliasas/genética , Carboxiliasas/aislamiento & purificación , Dominio Catalítico , Desulfovibrio desulfuricans/genética , Desulfovibrio vulgaris/genética , Hemo/aislamiento & purificación , Hemo/metabolismo , Cinética , Methanosarcina barkeri/genética , Oxidación-Reducción , Multimerización de Proteína , Estructura Terciaria de Proteína , Factores de Transcripción/química
8.
Biochim Biophys Acta ; 1844(7): 1238-47, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24713144

RESUMEN

An alternative route for haem b biosynthesis is operative in sulfate-reducing bacteria of the Desulfovibrio genus and in methanogenic Archaea. This pathway diverges from the canonical one at the level of uroporphyrinogen III and progresses via a distinct branch, where sirohaem acts as an intermediate precursor being converted into haem b by a set of novel enzymes, named the alternative haem biosynthetic proteins (Ahb). In this work, we report the biochemical characterisation of the Desulfovibrio vulgaris AhbD enzyme that catalyses the last step of the pathway. Mass spectrometry analysis showed that AhbD promotes the cleavage of S-adenosylmethionine (SAM) and converts iron-coproporphyrin III via two oxidative decarboxylations to yield haem b, methionine and the 5'-deoxyadenosyl radical. Electron paramagnetic resonance spectroscopy studies demonstrated that AhbD contains two [4Fe-4S](2+/1+) centres and that binding of the substrates S-adenosylmethionine and iron-coproporphyrin III induces conformational modifications in both centres. Amino acid sequence comparisons indicated that D. vulgaris AhbD belongs to the radical SAM protein superfamily, with a GGE-like motif and two cysteine-rich sequences typical for ligation of SAM molecules and iron-sulfur clusters, respectively. A structural model of D. vulgaris AhbD with putative binding pockets for the iron-sulfur centres and the substrates SAM and iron-coproporphyrin III is discussed.


Asunto(s)
Proteínas Bacterianas/metabolismo , Desulfovibrio vulgaris/enzimología , Hemo/biosíntesis , Proteínas Hierro-Azufre/metabolismo , Secuencia de Aminoácidos , Catálisis , Desulfovibrio vulgaris/crecimiento & desarrollo , Espectroscopía de Resonancia por Spin del Electrón , Datos de Secuencia Molecular , Oxidación-Reducción , Conformación Proteica , S-Adenosilmetionina/metabolismo , Homología de Secuencia de Aminoácido , Espectrofotometría Ultravioleta
9.
J Bacteriol ; 195(11): 2684-90, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23564166

RESUMEN

Desulfovibrio species are Gram-negative anaerobic sulfate-reducing bacteria that colonize the human gut. Recently, Desulfovibrio spp. have been implicated in gastrointestinal diseases and shown to stimulate the epithelial immune response, leading to increased production of inflammatory cytokines by macrophages. Activated macrophages are key cells of the immune system that impose nitrosative stress during phagocytosis. Hence, we have analyzed the in vitro and in vivo responses of Desulfovibrio vulgaris Hildenborough to nitric oxide (NO) and the role of the hybrid cluster proteins (HCP1 and HCP2) and rubredoxin oxygen oxidoreductases (ROO1 and ROO2) in NO protection. Among the four genes, hcp2 was the gene most highly induced by NO, and the hcp2 transposon mutant exhibited the lowest viability under conditions of NO stress. Studies in murine macrophages revealed that D. vulgaris survives incubation with these phagocytes and triggers NO production at levels similar to those stimulated by the cytokine gamma interferon (IFN-γ). Furthermore, D. vulgaris hcp and roo mutants exhibited reduced viability when incubated with macrophages, revealing that these gene products contribute to the survival of D. vulgaris during macrophage infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Desulfovibrio vulgaris/fisiología , Infecciones por Desulfovibrionaceae/microbiología , Proteínas Hierro-Azufre/metabolismo , Macrófagos/microbiología , NADH NADPH Oxidorreductasas/genética , Óxido Nítrico/metabolismo , Animales , Proteínas Bacterianas/genética , Línea Celular , Desulfovibrio vulgaris/efectos de los fármacos , Desulfovibrio vulgaris/genética , Desulfovibrio vulgaris/crecimiento & desarrollo , Infecciones por Desulfovibrionaceae/inmunología , Regulación Bacteriana de la Expresión Génica , Humanos , Proteínas Hierro-Azufre/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana , Mutagénesis Insercional , NADH NADPH Oxidorreductasas/metabolismo , Óxido Nítrico/farmacología , Nitritos/análisis , Nitritos/metabolismo , Estrés Oxidativo , Fenotipo , Estrés Fisiológico
10.
Adv Microb Physiol ; 61: 267-95, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23046956

RESUMEN

Sulfate-reducing microorganisms are a diverse group of bacteria and archaea that occupy important environmental niches and have potential for significant biotechnological impact. Desulfovibrio, the most studied genus among the sulfate-reducing microorganisms, contains proteins with a wide variety of tetrapyrrole-derived cofactors, including some unique derivatives such as uroporphyrin I and coproporphyrin III. Herein, we review tetrapyrrole metabolism in Desulfovibrio spp., including the production of sirohaem and cobalamin, and compare and contrast the biochemical properties of the enzymes involved in these biosynthetic pathways. Furthermore, we describe a novel pathway used by Desulfovibrio to synthesize haem b, which provides a previously unrecognized link between haem, sirohaem, and haem d(1). Finally, the organization and regulation of genes involved in the tetrapyrrole biosynthetic pathway is discussed.


Asunto(s)
Bacterias/metabolismo , Sulfatos/metabolismo , Tetrapirroles/biosíntesis , Tetrapirroles/metabolismo , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Hemo/biosíntesis , Oxidación-Reducción
11.
Anaerobe ; 18(4): 454-8, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22706208

RESUMEN

Intracellular free iron, is under aerobic conditions and via the Fenton reaction a catalyst for the formation of harmful reactive oxygen species. In this article, we analyzed the relation between intracellular iron storage and oxidative stress response in the sulfate reducing bacterium Desulfovibrio vulgaris Hildenborough, an anaerobe that is often found in oxygenated niches. To this end, we investigated the role of the iron storage protein bacterioferritin using transcriptomic and physiological approaches. We observed that transcription of bacterioferritin is strongly induced upon exposure of cells to an oxygenated atmosphere. When grown in the presence of high concentrations of oxygen the D. vulgaris bacterioferritin mutant exhibited, in comparison with the wild type strain, lower viability and a higher content of intracellular reactive oxygen species. Furthermore, the bacterioferritin gene is under the control of the oxidative stress response regulator D. vulgaris PerR. Altogether the data revealed a previously unrecognized ability for the iron storage bacterioferritin to contribute to the oxygen tolerance exhibited by D. vulgaris.


Asunto(s)
Proteínas Bacterianas/metabolismo , Grupo Citocromo b/metabolismo , Desulfovibrio vulgaris/metabolismo , Ferritinas/metabolismo , Oxígeno/metabolismo , Adaptación Fisiológica , Proteínas Bacterianas/genética , Grupo Citocromo b/genética , Desulfovibrio vulgaris/genética , Ferritinas/genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Viabilidad Microbiana , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Tiempo , Transcripción Genética
12.
Proc Natl Acad Sci U S A ; 108(45): 18260-5, 2011 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-21969545

RESUMEN

Modified tetrapyrroles such as chlorophyll, heme, siroheme, vitamin B(12), coenzyme F(430), and heme d(1) underpin a wide range of essential biological functions in all domains of life, and it is therefore surprising that the syntheses of many of these life pigments remain poorly understood. It is known that the construction of the central molecular framework of modified tetrapyrroles is mediated via a common, core pathway. Herein a further branch of the modified tetrapyrrole biosynthesis pathway is described in denitrifying and sulfate-reducing bacteria as well as the Archaea. This process entails the hijacking of siroheme, the prosthetic group of sulfite and nitrite reductase, and its processing into heme and d(1) heme. The initial step in these transformations involves the decarboxylation of siroheme to give didecarboxysiroheme. For d(1) heme synthesis this intermediate has to undergo the replacement of two propionate side chains with oxygen functionalities and the introduction of a double bond into a further peripheral side chain. For heme synthesis didecarboxysiroheme is converted into Fe-coproporphyrin by oxidative loss of two acetic acid side chains. Fe-coproporphyrin is then transformed into heme by the oxidative decarboxylation of two propionate side chains. The mechanisms of these reactions are discussed and the evolutionary significance of another role for siroheme is examined.


Asunto(s)
Hemo/análogos & derivados , Cromatografía Líquida de Alta Presión , Hemo/síntesis química , Hemo/química , Hemo/metabolismo , Oxígeno/metabolismo
13.
Proc Natl Acad Sci U S A ; 108(1): 97-102, 2011 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21173279

RESUMEN

The class II chelatases associated with heme, siroheme, and cobalamin biosynthesis are structurally related enzymes that insert a specific metal ion (Fe(2+) or Co(2+)) into the center of a modified tetrapyrrole (protoporphyrin or sirohydrochlorin). The structures of two related class II enzymes, CbiX(S) from Archaeoglobus fulgidus and CbiK from Salmonella enterica, that are responsible for the insertion of cobalt along the cobalamin biosynthesis pathway are presented in complex with their metallated product. A further structure of a CbiK from Desulfovibrio vulgaris Hildenborough reveals how cobalt is bound at the active site. The crystal structures show that the binding of sirohydrochlorin is distinctly different to porphyrin binding in the protoporphyrin ferrochelatases and provide a molecular overview of the mechanism of chelation. The structures also give insights into the evolution of chelatase form and function. Finally, the structure of a periplasmic form of Desulfovibrio vulgaris Hildenborough CbiK reveals a novel tetrameric arrangement of its subunits that are stabilized by the presence of a heme b cofactor. Whereas retaining colbaltochelatase activity, this protein has acquired a central cavity with the potential to chaperone or transport metals across the periplasmic space, thereby evolving a new use for an ancient protein subunit.


Asunto(s)
Cobalto/metabolismo , Evolución Molecular , Ferroquelatasa/metabolismo , Modelos Moleculares , Familia de Multigenes/genética , Vitamina B 12/biosíntesis , Archaeoglobus fulgidus/enzimología , Dominio Catalítico/genética , Cristalización , Desulfovibrio vulgaris/enzimología , Ferroquelatasa/genética , Porfirinas/metabolismo , Salmonella enterica/enzimología , Uroporfirinas/metabolismo
14.
Biochem J ; 420(2): 317-25, 2009 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-19267692

RESUMEN

The biosynthesis of the tetrapyrrole framework has been investigated in the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough by characterization of the enzymes required for the transformation of aminolaevulinic acid into sirohydrochlorin. PBG (porphobilinogen) synthase (HemB) was found to be a zinc-dependent enzyme that exists in its native state as a homohexamer. PBG deaminase (HemC) was shown to contain the dipyrromethane cofactor. Uroporphyrinogen III synthase is found fused with a uroporphyrinogen III methyltransferase (HemD-CobA). Both activities could be demonstrated in this amalgamated protein and the individual enzyme activities were separated by dissecting the relevant gene to allow the production of two distinct proteins. A gene annotated in the genome as a bifunctional precorrin-2 dehydrogenase/sirohydrochlorin ferrochelatase was in fact shown to act only as a dehydrogenase and is simply capable of synthesizing sirohydrochlorin rather than sirohaem. Genome analysis also reveals a lack of any uroporphyrinogen III decarboxylase, an enzyme necessary for the classical route to haem synthesis. However, the genome does encode some predicted haem d1 biosynthetic enzymes even though the bacterium does not contain the cd1 nitrite reductase. We suggest that sirohydrochlorin acts as a substrate for haem synthesis using a novel pathway that involves homologues of the d1 biogenesis system. This explains why the uroporphyrinogen III synthase is found fused with the methyltransferase, bypassing the need for uroporphyrinogen III decarboxylase activity.


Asunto(s)
Desulfovibrio vulgaris/enzimología , Desulfovibrio vulgaris/metabolismo , Tetrapirroles/biosíntesis , Secuencia de Aminoácidos , Ácido Aminolevulínico/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Desulfovibrio vulgaris/genética , Hidroximetilbilano Sintasa/genética , Hidroximetilbilano Sintasa/metabolismo , Cinética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Datos de Secuencia Molecular , Porfobilinógeno Sintasa/genética , Porfobilinógeno Sintasa/metabolismo , Homología de Secuencia de Aminoácido , Espectrofotometría Ultravioleta , Especificidad por Sustrato , Uroporfirinógeno III Sintetasa/genética , Uroporfirinógeno III Sintetasa/metabolismo , Uroporfirinas/metabolismo
15.
Biochim Biophys Acta ; 1777(12): 1528-34, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18930018

RESUMEN

The genome of the sulphate reducing bacterium Desulfovibrio vulgaris Hildenborough, still considered a strict anaerobe, encodes two oxygen reductases of the bd and haem-copper types. The haem-copper oxygen reductase deduced amino acid sequence reveals that it is a Type A2 enzyme, which in its subunit II contains two c-type haem binding motifs. We have characterized the cytochrome c domain of subunit II and confirmed the binding of two haem groups, both with Met-His iron coordination. Hence, this enzyme constitutes the first example of a ccaa3 haem-copper oxygen reductase. The expression of D. vulgaris haem-copper oxygen reductase was found to be independent of the electron donor and acceptor source and is not altered by stress factors such as oxygen exposure, nitrite, nitrate, and iron; therefore the haem-copper oxygen reductase seems to be constitutive. The KCN sensitive oxygen reduction by D. vulgaris membranes demonstrated in this work indicates the presence of an active haem-copper oxygen reductase. D. vulgaris membranes perform oxygen reduction when accepting electrons from the monohaem cytochrome c553, thus revealing the first possible electron donor to the terminal oxygen reductase of D. vulgaris. The physiological implication of the presence of the oxygen reductase in this organism is discussed.


Asunto(s)
Cobre/metabolismo , Citocromos c/química , Desulfovibrio vulgaris/enzimología , Hemo/metabolismo , Oxidorreductasas/metabolismo , Oxígeno/metabolismo , Subunidades de Proteína/química , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Grupo Citocromo c/metabolismo , Desulfovibrio vulgaris/citología , Desulfovibrio vulgaris/genética , Electrones , Datos de Secuencia Molecular , Familia de Multigenes , Oxidorreductasas/química , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , Alineación de Secuencia , Análisis de Secuencia de Proteína
16.
Biochemistry ; 47(21): 5851-7, 2008 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-18457416

RESUMEN

The sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough possesses a large number of porphyrin-containing proteins whose biosynthesis is poorly characterized. In this work, we have studied two putative CbiK cobaltochelatases present in the genome of D. vulgaris. The assays revealed that both enzymes insert cobalt and iron into sirohydrochlorin, with specific activities with iron lower than that measured with cobalt. Nevertheless, the two D. vulgaris chelatases complement an E. coli cysG mutant strain showing that, in vivo, they are able to load iron into sirohydrochlorin. The results showed that the functional cobaltochelatases have distinct roles with one, CbiK(C), likely to be the enzyme associated with cytoplasmic cobalamin biosynthesis, while the other, CbiK(P), is periplasmic located and possibly associated with an iron transport system. Finally, the ability of D. vulgaris to produce vitamin B 12 was also demonstrated in this work.


Asunto(s)
Proteínas Bacterianas/química , Desulfovibrio vulgaris/enzimología , Liasas/química , Secuencia de Aminoácidos , Transporte Biológico , Citoplasma/metabolismo , Escherichia coli/metabolismo , Genoma Bacteriano , Hierro/metabolismo , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Mutación , Homología de Secuencia de Aminoácido , Espectrofotometría Ultravioleta/métodos , Uroporfirinas/química , Vitamina B 12/metabolismo
17.
FEBS Lett ; 581(3): 433-6, 2007 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-17239374

RESUMEN

Sulfate reducing bacteria of the Desulfovibrio genus are considered anaerobes, in spite of the fact that they are frequently isolated close to oxic habitats. However, until now, growth in the presence of high concentrations of oxygen was not reported for members of this genus. This work shows for the first time that the sulfate reducing bacterium Desulfovibrio desulfuricans ATCC 27774 is able to grow in the presence of nearly atmospheric oxygen levels. In addition, the activity and expression profile of several key enzymes was analyzed under different oxygen concentrations.


Asunto(s)
Desulfovibrio desulfuricans/crecimiento & desarrollo , Desulfovibrio desulfuricans/metabolismo , Oxígeno/metabolismo , Aerobiosis , Anaerobiosis , Desulfovibrio desulfuricans/enzimología , Oxidación-Reducción , Consumo de Oxígeno , Sulfatos/metabolismo
18.
Biochim Biophys Acta ; 1709(1): 95-103, 2005 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16023073

RESUMEN

The NADH:menaquinone oxidoreductase (Nqo) is one of the enzymes present in the respiratory chain of the thermohalophilic bacterium Rhodothermus marinus. The genes coding for the R. marinus Nqo subunits were isolated and sequenced, clustering in two operons [nqo1 to nqo7 (nqoA) and nqo10 to nqo14 (nqoB)] and two independent genes (nqo8 and nqo9). Unexpectedly, two genes encoding homologues of a NhaD Na+/H+ antiporter (NhaD) and of a pterin-4alpha-carbinolamine dehydratase (PCD) were identified within nqoB, flanked by nqo13 and nqo14. Eight conserved motives to harbour iron-sulphur centres are identified in the deduced primary structures, as well as two consensus sequences to bind nucleotides, in this case NADH and FMN. Moreover, the open-reading-frames of the putative NhaD and PCD were shown to be co-transcribed with the other complex I genes encoded by nqoB. The possible role of these two genes in R. marinus complex I is discussed.


Asunto(s)
Rhodothermus/genética , Intercambiadores de Sodio-Hidrógeno/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Secuencia de Bases , Cartilla de ADN , Genes Bacterianos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rhodothermus/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...