Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 29(1): 10-20, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34963704

RESUMEN

Loading of the eukaryotic replicative helicase onto replication origins involves two MCM hexamers forming a double hexamer (DH) around duplex DNA. During S phase, helicase activation requires MCM phosphorylation by Dbf4-dependent kinase (DDK), comprising Cdc7 and Dbf4. DDK selectively phosphorylates loaded DHs, but how such fidelity is achieved is unknown. Here, we determine the cryogenic electron microscopy structure of Saccharomyces cerevisiae DDK in the act of phosphorylating a DH. DDK docks onto one MCM ring and phosphorylates the opposed ring. Truncation of the Dbf4 docking domain abrogates DH phosphorylation, yet Cdc7 kinase activity is unaffected. Late origin firing is blocked in response to DNA damage via Dbf4 phosphorylation by the Rad53 checkpoint kinase. DDK phosphorylation by Rad53 impairs DH phosphorylation by blockage of DDK binding to DHs, and also interferes with the Cdc7 active site. Our results explain the structural basis and regulation of the selective phosphorylation of DNA-loaded MCM DHs, which supports bidirectional replication.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , ADN de Hongos/metabolismo , Multimerización de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/química , Quinasa de Punto de Control 2/metabolismo , Componente 4 del Complejo de Mantenimiento de Minicromosoma/química , Componente 4 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Simulación del Acoplamiento Molecular , Nucleótidos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Especificidad por Sustrato
3.
Elife ; 92020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33252036

RESUMEN

Subcellular compartmentalisation is necessary for eukaryotic cell function. Spatial and temporal regulation of kinesin activity is essential for building these local environments via control of intracellular cargo distribution. Kinesin-binding protein (KBP) interacts with a subset of kinesins via their motor domains, inhibits their microtubule (MT) attachment, and blocks their cellular function. However, its mechanisms of inhibition and selectivity have been unclear. Here we use cryo-electron microscopy to reveal the structure of KBP and of a KBP-kinesin motor domain complex. KBP is a tetratricopeptide repeat-containing, right-handed α-solenoid that sequesters the kinesin motor domain's tubulin-binding surface, structurally distorting the motor domain and sterically blocking its MT attachment. KBP uses its α-solenoid concave face and edge loops to bind the kinesin motor domain, and selected structure-guided mutations disrupt KBP inhibition of kinesin transport in cells. The KBP-interacting motor domain surface contains motifs exclusively conserved in KBP-interacting kinesins, suggesting a basis for kinesin selectivity.


Asunto(s)
Modelos Moleculares , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/ultraestructura , Microscopía por Crioelectrón , Humanos , Cinesinas/química , Cinesinas/ultraestructura
4.
Mol Cell ; 79(6): 917-933.e9, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32755595

RESUMEN

Despite key roles in sister chromatid cohesion and chromosome organization, the mechanism by which cohesin rings are loaded onto DNA is still unknown. Here we combine biochemical approaches and cryoelectron microscopy (cryo-EM) to visualize a cohesin loading intermediate in which DNA is locked between two gates that lead into the cohesin ring. Building on this structural framework, we design experiments to establish the order of events during cohesin loading. In an initial step, DNA traverses an N-terminal kleisin gate that is first opened upon ATP binding and then closed as the cohesin loader locks the DNA against the ATPase gate. ATP hydrolysis will lead to ATPase gate opening to complete DNA entry. Whether DNA loading is successful or results in loop extrusion might be dictated by a conserved kleisin N-terminal tail that guides the DNA through the kleisin gate. Our results establish the molecular basis for cohesin loading onto DNA.


Asunto(s)
Proteínas de Ciclo Celular/ultraestructura , Cromátides/ultraestructura , Proteínas Cromosómicas no Histona/ultraestructura , ADN/ultraestructura , Intercambio de Cromátides Hermanas/genética , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica/genética , Microscopía por Crioelectrón , ADN/genética , Conformación de Ácido Nucleico , Conformación Proteica , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura , Cohesinas
5.
Dev Cell ; 53(5): 603-617.e8, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32433913

RESUMEN

The γ-tubulin ring complex (γTuRC) is the major microtubule nucleator in cells. The mechanism of its regulation is not understood. We purified human γTuRC and measured its nucleation properties in a total internal reflection fluorescence (TIRF) microscopy-based real-time nucleation assay. We find that γTuRC stably caps the minus ends of microtubules that it nucleates stochastically. Nucleation is inefficient compared with microtubule elongation. The 4 Å resolution cryoelectron microscopy (cryo-EM) structure of γTuRC, combined with crosslinking mass spectrometry analysis, reveals an asymmetric conformation with only part of the complex in a "closed" conformation matching the microtubule geometry. Actin in the core of the complex, and MZT2 at the outer perimeter of the closed part of γTuRC appear to stabilize the closed conformation. The opposite side of γTuRC is in an "open," nucleation-incompetent conformation, leading to a structural asymmetry explaining the low nucleation efficiency of purified human γTuRC. Our data suggest possible regulatory mechanisms for microtubule nucleation by γTuRC closure.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Tubulina (Proteína)/química , Actinas/química , Actinas/metabolismo , Microscopía por Crioelectrón , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/química , Microtúbulos/química , Microtúbulos/metabolismo , Simulación de Dinámica Molecular , Conformación Proteica , Imagen Individual de Molécula , Tubulina (Proteína)/metabolismo
6.
Structure ; 28(4): 450-457.e5, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32084356

RESUMEN

Kinesin-5 motors are vital mitotic spindle components, and disruption of their function perturbs cell division. We investigated the molecular mechanism of the human kinesin-5 inhibitor GSK-1, which allosterically promotes tight microtubule binding. GSK-1 inhibits monomeric human kinesin-5 ATPase and microtubule gliding activities, and promotes the motor's microtubule stabilization activity. Using cryoelectron microscopy, we determined the 3D structure of the microtubule-bound motor-GSK-1 at 3.8 Å overall resolution. The structure reveals that GSK-1 stabilizes the microtubule binding surface of the motor in an ATP-like conformation, while destabilizing regions of the motor around the empty nucleotide binding pocket. Density corresponding to GSK-1 is located between helix-α4 and helix-α6 in the motor domain at its interface with the microtubule. Using a combination of difference mapping and protein-ligand docking, we characterized the kinesin-5-GSK-1 interaction and further validated this binding site using mutagenesis. This work opens up new avenues of investigation of kinesin inhibition and spindle perturbation.


Asunto(s)
Cinesinas/química , Microtúbulos/química , Regulación Alostérica , Sitios de Unión , Microscopía por Crioelectrón , Humanos , Cinesinas/antagonistas & inhibidores , Cinesinas/metabolismo , Microtúbulos/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica
7.
Nature ; 575(7784): 704-710, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31748745

RESUMEN

In preparation for bidirectional DNA replication, the origin recognition complex (ORC) loads two hexameric MCM helicases to form a head-to-head double hexamer around DNA1,2. The mechanism of MCM double-hexamer formation is debated. Single-molecule experiments have suggested a sequential mechanism, in which the ORC-dependent loading of the first hexamer drives the recruitment of the second hexamer3. By contrast, biochemical data have shown that two rings are loaded independently via the same ORC-mediated mechanism, at two inverted DNA sites4,5. Here we visualize MCM loading using time-resolved electron microscopy, and identify intermediates in the formation of the double hexamer. We confirm that both hexamers are recruited via the same interaction that occurs between ORC and the C-terminal domains of the MCM helicases. Moreover, we identify the mechanism of coupled MCM loading. The loading of the first MCM hexamer around DNA creates a distinct interaction site, which promotes the engagement of ORC at the N-terminal homodimerization interface of MCM. In this configuration, ORC is poised to direct the recruitment of the second hexamer in an inverted orientation, which is suitable for the formation of the double hexamer. Our results therefore reconcile the two apparently contrasting models derived from single-molecule experiments and biochemical data.


Asunto(s)
Microscopía por Crioelectrón , Modelos Moleculares , Complejo de Reconocimiento del Origen/metabolismo , Complejo de Reconocimiento del Origen/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Simulación por Computador , Nucleosomas/metabolismo , Nucleosomas/ultraestructura , Complejo de Reconocimiento del Origen/química , Unión Proteica , Estructura Cuaternaria de Proteína , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/química
8.
Cell Rep ; 28(10): 2673-2688.e8, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31484077

RESUMEN

In the eukaryotic replisome, DNA unwinding by the Cdc45-MCM-Go-Ichi-Ni-San (GINS) (CMG) helicase requires a hexameric ring-shaped ATPase named minichromosome maintenance (MCM), which spools single-stranded DNA through its central channel. Not all six ATPase sites are required for unwinding; however, the helicase mechanism is unknown. We imaged ATP-hydrolysis-driven translocation of the CMG using cryo-electron microscopy (cryo-EM) and found that the six MCM subunits engage DNA using four neighboring protomers at a time, with ATP binding promoting DNA engagement. Morphing between different helicase states leads us to suggest a non-symmetric hand-over-hand rotary mechanism, explaining the asymmetric requirements of ATPase function around the MCM ring of the CMG. By imaging of a higher-order replisome assembly, we find that the Mrc1-Csm3-Tof1 fork-stabilization complex strengthens the interaction between parental duplex DNA and the CMG at the fork, which might support the coupling between DNA translocation and fork unwinding.


Asunto(s)
Adenosina Trifosfato/metabolismo , ADN Helicasas/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/metabolismo , Eucariontes/enzimología , Complejos Multienzimáticos/metabolismo , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Animales , Microscopía por Crioelectrón , ADN/ultraestructura , ADN Helicasas/química , ADN Helicasas/ultraestructura , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Hidrólisis , Modelos Moleculares , Dominios Proteicos , Saccharomyces cerevisiae/metabolismo
9.
Nat Commun ; 9(1): 5061, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30498216

RESUMEN

Eukaryotic origin firing depends on assembly of the Cdc45-MCM-GINS (CMG) helicase. A key step is the recruitment of GINS that requires the leading-strand polymerase Pol epsilon, composed of Pol2, Dpb2, Dpb3, Dpb4. While a truncation of the catalytic N-terminal Pol2 supports cell division, Dpb2 and C-terminal Pol2 (C-Pol2) are essential for viability. Dpb2 and C-Pol2 are non-catalytic modules, shown or predicted to be related to an exonuclease and DNA polymerase, respectively. Here, we present the cryo-EM structure of the isolated C-Pol2/Dpb2 heterodimer, revealing that C-Pol2 contains a DNA polymerase fold. We also present the structure of CMG/C-Pol2/Dpb2 on a DNA fork, and find that polymerase binding changes both the helicase structure and fork-junction engagement. Inter-subunit contacts that keep the helicase-polymerase complex together explain several cellular phenotypes. At least some of these contacts are preserved during Pol epsilon-dependent CMG assembly on path to origin firing, as observed with DNA replication reconstituted in vitro.


Asunto(s)
ADN Polimerasa II/química , ADN Polimerasa II/metabolismo , Replicación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN/química , ADN/genética , ADN Polimerasa II/genética , Replicación del ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estructura Terciaria de Proteína
10.
Methods Mol Biol ; 1814: 287-296, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29956239

RESUMEN

High-resolution image acquisition and structure determination by cryo-electron microscopy is becoming increasingly streamlined. Preparing electron-microscopy grids of suitable quality remains, however, a critical bottleneck. Strategies to achieve particle monodispersity, optimal sample concentration and suitable ice thickness can vary from specimen to specimen. In this book chapter we describe our protocols for negative-stain grid and cryo-grid preparation, which we apply to studying protein-nucleic acid complexes.


Asunto(s)
Microscopía por Crioelectrón/métodos , Congelación , Ácidos Nucleicos/ultraestructura , Proteínas/ultraestructura , Carbono/química , Coloración Negativa , Soluciones
11.
Nat Commun ; 8(1): 2241, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29269875

RESUMEN

Eukaryotic origins of replication are licensed upon loading of the MCM helicase motor onto DNA. ATP hydrolysis by MCM is required for loading and the post-catalytic MCM is an inactive double hexamer that encircles duplex DNA. Origin firing depends on MCM engagement of Cdc45 and GINS to form the CMG holo-helicase. CMG assembly requires several steps including MCM phosphorylation by DDK. To understand origin activation, here we have determined the cryo-EM structures of DNA-bound MCM, either unmodified or phosphorylated, and visualize a phospho-dependent MCM element likely important for Cdc45 recruitment. MCM pore loops touch both the Watson and Crick strands, constraining duplex DNA in a bent configuration. By comparing our new MCM-DNA structure with the structure of CMG-DNA, we suggest how the conformational transition from the loaded, post-catalytic MCM to CMG might promote DNA untwisting and melting at the onset of replication.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/ultraestructura , ADN/ultraestructura , Proteínas de Mantenimiento de Minicromosoma/ultraestructura , Proteínas Nucleares/ultraestructura , Conformación de Ácido Nucleico , Conformación Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Microscopía por Crioelectrón , ADN/metabolismo , ADN Helicasas , Proteínas de Unión al ADN/metabolismo , Holoenzimas , Procesamiento de Imagen Asistido por Computador , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación , Estructura Cuaternaria de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Proc Natl Acad Sci U S A ; 114(45): E9539-E9548, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29078367

RESUMEN

Kinesin motors play diverse roles in mitosis and are targets for antimitotic drugs. The clinical significance of these motors emphasizes the importance of understanding the molecular basis of their function. Equally important, investigations into the modes of inhibition of these motors provide crucial information about their molecular mechanisms. Kif18A regulates spindle microtubules through its dual functionality, with microtubule-based stepping and regulation of microtubule dynamics. We investigated the mechanism of Kif18A and its inhibition by the small molecule BTB-1. The Kif18A motor domain drives ATP-dependent plus-end microtubule gliding, and undergoes conformational changes consistent with canonical mechanisms of plus-end-directed motility. The Kif18A motor domain also depolymerizes microtubule plus and minus ends. BTB-1 inhibits both of these microtubule-based Kif18A activities. A reconstruction of BTB-1-bound, microtubule-bound Kif18A, in combination with computational modeling, identified an allosteric BTB-1-binding site near loop5, where it blocks the ATP-dependent conformational changes that we characterized. Strikingly, BTB-1 binding is close to that of well-characterized Kif11 inhibitors that block tight microtubule binding, whereas BTB-1 traps Kif18A on the microtubule. Our work highlights a general mechanism of kinesin inhibition in which small-molecule binding near loop5 prevents a range of conformational changes, blocking motor function.


Asunto(s)
Cinesinas/antagonistas & inhibidores , Cinesinas/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión/efectos de los fármacos , Simulación por Computador , Humanos , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Mitosis/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo , Sulfonas/farmacología
13.
Science ; 355(6320): 93-95, 2017 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-28059770

RESUMEN

Retroviral integrase (IN) functions within the intasome nucleoprotein complex to catalyze insertion of viral DNA into cellular chromatin. Using cryo-electron microscopy, we now visualize the functional maedi-visna lentivirus intasome at 4.9 angstrom resolution. The intasome comprises a homo-hexadecamer of IN with a tetramer-of-tetramers architecture featuring eight structurally distinct types of IN protomers supporting two catalytically competent subunits. The conserved intasomal core, previously observed in simpler retroviral systems, is formed between two IN tetramers, with a pair of C-terminal domains from flanking tetramers completing the synaptic interface. Our results explain how HIV-1 IN, which self-associates into higher-order multimers, can form a functional intasome, reconcile the bulk of early HIV-1 IN biochemical and structural data, and provide a lentiviral platform for design of HIV-1 IN inhibitors.


Asunto(s)
Integrasa de VIH/química , VIH-1/química , Integración Viral , Dominio Catalítico , Microscopía por Crioelectrón , ADN Viral/química , ADN Viral/ultraestructura , Diseño de Fármacos , Integrasa de VIH/ultraestructura , Inhibidores de Integrasa VIH/química , VIH-1/enzimología , VIH-1/ultraestructura , Humanos , Modelos Moleculares , Dominios Proteicos , Electricidad Estática , Ensamble de Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...