Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1203, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331987

RESUMEN

DNA damage resistance is a major barrier to effective DNA-damaging therapy in multiple myeloma (MM). To discover mechanisms through which MM cells overcome DNA damage, we investigate how MM cells become resistant to antisense oligonucleotide (ASO) therapy targeting Interleukin enhancer binding factor 2 (ILF2), a DNA damage regulator that is overexpressed in 70% of MM patients whose disease has progressed after standard therapies have failed. Here, we show that MM cells undergo adaptive metabolic rewiring to restore energy balance and promote survival in response to DNA damage activation. Using a CRISPR/Cas9 screening strategy, we identify the mitochondrial DNA repair protein DNA2, whose loss of function suppresses MM cells' ability to overcome ILF2 ASO-induced DNA damage, as being essential to counteracting oxidative DNA damage. Our study reveals a mechanism of vulnerability of MM cells that have an increased demand for mitochondrial metabolism upon DNA damage activation.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/genética , ADN Helicasas/metabolismo , Reprogramación Metabólica , Reparación del ADN , Daño del ADN
2.
bioRxiv ; 2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37066354

RESUMEN

RAS pathway mutations, which are present in 30% of patients with chronic myelomonocytic leukemia (CMML) at diagnosis, confer a high risk of resistance to and progression after hypomethylating agent (HMA) therapy, the current standard of care for the disease. Using single-cell, multi-omics technologies, we sought to dissect the biological mechanisms underlying the initiation and progression of RAS pathway-mutated CMML. We found that RAS pathway mutations induced the transcriptional reprogramming of hematopoietic stem and progenitor cells (HSPCs), which underwent proliferation and monocytic differentiation in response to cell-intrinsic and -extrinsic inflammatory signaling that also impaired immune cells' functions. HSPCs expanded at disease progression and relied on the NF- K B pathway effector MCL1 to maintain their survival, which explains why patients with RAS pathway- mutated CMML do not benefit from BCL2 inhibitors such as venetoclax. Our study has implications for developing therapies to improve the survival of patients with RAS pathway- mutated CMML.

3.
bioRxiv ; 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36865225

RESUMEN

DNA damage resistance is a major barrier to effective DNA-damaging therapy in multiple myeloma (MM). To discover novel mechanisms through which MM cells overcome DNA damage, we investigated how MM cells become resistant to antisense oligonucleotide (ASO) therapy targeting ILF2, a DNA damage regulator that is overexpressed in 70% of MM patients whose disease has progressed after standard therapies have failed. Here, we show that MM cells undergo an adaptive metabolic rewiring and rely on oxidative phosphorylation to restore energy balance and promote survival in response to DNA damage activation. Using a CRISPR/Cas9 screening strategy, we identified the mitochondrial DNA repair protein DNA2, whose loss of function suppresses MM cells' ability to overcome ILF2 ASO-induced DNA damage, as being essential to counteracting oxidative DNA damage and maintaining mitochondrial respiration. Our study revealed a novel vulnerability of MM cells that have an increased demand for mitochondrial metabolism upon DNA damage activation. STATEMENT OF SIGNIFICANCE: Metabolic reprogramming is a mechanism through which cancer cells maintain survival and become resistant to DNA-damaging therapy. Here, we show that targeting DNA2 is synthetically lethal in myeloma cells that undergo metabolic adaptation and rely on oxidative phosphorylation to maintain survival after DNA damage activation.

4.
Leuk Lymphoma ; 63(13): 3154-3164, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36059252

RESUMEN

Failure of hypomethylation agent (HMA) treatments is an important issue in myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML). Recent studies indicated that function of wildtype TP53 positively impacts outcome of HMA treatments. We investigated the combination of the HMA azacitidine (AZA) with DS-3032b and DS-5272, novel antagonists of the TP53 negative regulator MDM2, in cellular and animal models of MDS and CMML. In TP53 wildtype myeloid cell line, combinational effects of DS-3032b or DS-5272 with AZA were observed. In Tet2-knockout mouse model of MDS and CMML, DS-5272 and AZA combination ameliorated disease-like phenotype. RNA-Seq analysis in mouse bone marrow hematopoietic stem and progenitors indicated that DS-5272 and AZA combination caused down-regulation of leukemia stem cell marker genes and activation of pathways of TP53 function and stability. These findings demonstrate that combining an MDM2 antagonist with AZA has potential to improve AZA treatment in TP53 wildtype MDS and CMML.


Asunto(s)
Leucemia Mielomonocítica Crónica , Síndromes Mielodisplásicos , Animales , Ratones , Azacitidina/farmacología , Azacitidina/uso terapéutico , Leucemia Mielomonocítica Crónica/tratamiento farmacológico , Leucemia Mielomonocítica Crónica/genética , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Imidazoles/uso terapéutico
5.
Exp Hematol ; 115: 44-53, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36150563

RESUMEN

Hypomethylating agents (HMAs) are the standard of care for myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML). HMA treatment failure is a major clinical problem and its mechanisms are poorly characterized. We performed RNA sequencing in CD34+ bone marrow stem hematopoietic stem and progenitor cells (BM-HSPCs) from 51 patients with CMML and MDS before HMA treatment and compared transcriptomic signatures between responders and nonresponders. We observed very few genes with significant differential expression in HMA non-responders versus responders, and the commonly altered genes in non-responders to both azacitidine (AZA) and decitabine (DAC) treatments were immunoglobulin genes. Gene set analysis identified 78 biological pathways commonly altered in non-responders to both treatments. Among these, we determined that the γ-aminobutyric acid (GABA) receptor signaling significantly affected hematopoiesis in both human BM-HSPCs and mice, indicating that the transcriptomic signatures identified here could serve as candidate biomarkers and therapeutic targets for HMA failure in MDS and CMML.


Asunto(s)
Leucemia Mielomonocítica Crónica , Leucemia Mielomonocítica Juvenil , Síndromes Mielodisplásicos , Humanos , Ratones , Animales , Leucemia Mielomonocítica Crónica/tratamiento farmacológico , Leucemia Mielomonocítica Crónica/genética , Transcriptoma , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Azacitidina/farmacología , Azacitidina/uso terapéutico , Leucemia Mielomonocítica Juvenil/tratamiento farmacológico
6.
Blood Cancer Discov ; 3(6): 554-567, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35926182

RESUMEN

SF3B1 mutations, which occur in 20% of patients with myelodysplastic syndromes (MDS), are the hallmarks of a specific MDS subtype, MDS with ringed sideroblasts (MDS-RS), which is characterized by the accumulation of erythroid precursors in the bone marrow and primarily affects the elderly population. Here, using single-cell technologies and functional validation studies of primary SF3B1-mutant MDS-RS samples, we show that SF3B1 mutations lead to the activation of the EIF2AK1 pathway in response to heme deficiency and that targeting this pathway rescues aberrant erythroid differentiation and enables the red blood cell maturation of MDS-RS erythroblasts. These data support the development of EIF2AK1 inhibitors to overcome transfusion dependency in patients with SF3B1-mutant MDS-RS with impaired red blood cell production. SIGNIFICANCE: MDS-RS are characterized by significant anemia. Patients with MDS-RS die from a shortage of red blood cells and the side effects of iron overload due to their constant need for transfusions. Our study has implications for the development of therapies to achieve long-lasting hematologic responses. This article is highlighted in the In This Issue feature, p. 476.


Asunto(s)
Síndromes Mielodisplásicos , Fosfoproteínas , Humanos , Anciano , Factores de Empalme de ARN/genética , Fosfoproteínas/genética , Síndromes Mielodisplásicos/genética , Células Precursoras Eritroides , Transducción de Señal , eIF-2 Quinasa
7.
Leukemia ; 36(8): 2097-2107, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35697791

RESUMEN

Loss-of-function TET2 mutations are recurrent somatic lesions in chronic myelomonocytic leukemia (CMML). KDM6B encodes a histone demethylase involved in innate immune regulation that is overexpressed in CMML. We conducted genomic and transcriptomic analyses in treatment naïve CMML patients and observed that the patients carrying both TET2 mutations and KDM6B overexpression constituted 18% of the cohort and 42% of patients with TET2 mutations. We therefore hypothesized that KDM6B overexpression cooperated with TET2 deficiency in CMML pathogenesis. We developed a double-lesion mouse model with both aberrations, and discovered that the mice exhibited a more prominent CMML-like phenotype than mice with either Tet2 deficiency or KDM6B overexpression alone. The phenotype includes monocytosis, anemia, splenomegaly, and increased frequencies and repopulating activity of bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs). Significant transcriptional alterations were identified in double-lesion mice, which were associated with activation of proinflammatory signals and repression of signals maintaining genome stability. Finally, KDM6B inhibitor reduced BM repopulating activity of double-lesion mice and tumor burden in mice transplanted with BM-HSPCs from CMML patients with TET2 mutations. These data indicate that TET2 deficiency and KDM6B overexpression cooperate in CMML pathogenesis of and that KDM6B could serve as a potential therapeutic target in this disease.


Asunto(s)
Proteínas de Unión al ADN , Dioxigenasas , Histona Demetilasas con Dominio de Jumonji , Leucemia Mielomonocítica Crónica , Leucemia Mielomonocítica Juvenil , Animales , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/deficiencia , Dioxigenasas/genética , Dioxigenasas/metabolismo , Perfilación de la Expresión Génica , Genoma , Humanos , Histona Demetilasas con Dominio de Jumonji/biosíntesis , Histona Demetilasas con Dominio de Jumonji/genética , Leucemia Mielomonocítica Crónica/genética , Leucemia Mielomonocítica Crónica/metabolismo , Leucemia Mielomonocítica Juvenil/genética , Leucemia Mielomonocítica Juvenil/metabolismo , Mutación con Pérdida de Función , Ratones , Mutación , Proteínas Proto-Oncogénicas/genética
9.
Nat Med ; 28(3): 557-567, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35241842

RESUMEN

Myelodysplastic syndromes (MDS) are heterogeneous neoplastic disorders of hematopoietic stem cells (HSCs). The current standard of care for patients with MDS is hypomethylating agent (HMA)-based therapy; however, almost 50% of MDS patients fail HMA therapy and progress to acute myeloid leukemia, facing a dismal prognosis due to lack of approved second-line treatment options. As cancer stem cells are the seeds of disease progression, we investigated the biological properties of the MDS HSCs that drive disease evolution, seeking to uncover vulnerabilities that could be therapeutically exploited. Through integrative molecular profiling of HSCs and progenitor cells in large patient cohorts, we found that MDS HSCs in two distinct differentiation states are maintained throughout the clinical course of the disease, and expand at progression, depending on recurrent activation of the anti-apoptotic regulator BCL-2 or nuclear factor-kappa B-mediated survival pathways. Pharmacologically inhibiting these pathways depleted MDS HSCs and reduced tumor burden in experimental systems. Further, patients with MDS who progressed after failure to frontline HMA therapy and whose HSCs upregulated BCL-2 achieved improved clinical responses to venetoclax-based therapy in the clinical setting. Overall, our study uncovers that HSC architectures in MDS are potential predictive biomarkers to guide second-line treatments after HMA failure. These findings warrant further investigation of HSC-specific survival pathways to identify new therapeutic targets of clinical potential in MDS.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Síndromes Mielodisplásicos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Células Madre Hematopoyéticas/patología , Humanos , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Sulfonamidas
11.
Nat Commun ; 12(1): 6850, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34824242

RESUMEN

The molecular mechanisms that drive hematopoietic stem cell functional decline under conditions of telomere shortening are not completely understood. In light of recent advances in single-cell technologies, we sought to redefine the transcriptional and epigenetic landscape of mouse and human hematopoietic stem cells under telomere attrition, as induced by pathogenic germline variants in telomerase complex genes. Here, we show that telomere attrition maintains hematopoietic stem cells under persistent metabolic activation and differentiation towards the megakaryocytic lineage through the cell-intrinsic upregulation of the innate immune signaling response, which directly compromises hematopoietic stem cells' self-renewal capabilities and eventually leads to their exhaustion. Mechanistically, we demonstrate that targeting members of the Ifi20x/IFI16 family of cytosolic DNA sensors using the oligodeoxynucleotide A151, which comprises four repeats of the TTAGGG motif of the telomeric DNA, overcomes interferon signaling activation in telomere-dysfunctional hematopoietic stem cells and these cells' skewed differentiation towards the megakaryocytic lineage. This study challenges the historical hypothesis that telomere attrition limits the proliferative potential of hematopoietic stem cells by inducing apoptosis, autophagy, or senescence, and suggests that targeting IFI16 signaling axis might prevent hematopoietic stem cell functional decline in conditions affecting telomere maintenance.


Asunto(s)
Hematopoyesis/fisiología , Acortamiento del Telómero/fisiología , Animales , Trastornos de Fallo de la Médula Ósea/genética , Trastornos de Fallo de la Médula Ósea/metabolismo , Trastornos de Fallo de la Médula Ósea/patología , Autorrenovación de las Células , Reprogramación Celular , Hematopoyesis/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Interferones/metabolismo , Megacariocitos/citología , Megacariocitos/metabolismo , Ratones , Proteínas Nucleares/metabolismo , Oligodesoxirribonucleótidos/metabolismo , Fosfoproteínas/metabolismo , Transducción de Señal , Análisis de la Célula Individual , Telómero/química , Telómero/fisiología , Acortamiento del Telómero/genética
12.
PLoS One ; 13(11): e0207504, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30496196

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0139209.].

13.
J Cardiovasc Dev Dis ; 5(3)2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-30111698

RESUMEN

We previously reported how the loss of CHIP expression (Carboxyl terminus of Hsc70-Interacting Protein) during pressure overload resulted in robust cardiac dysfunction, which was accompanied by a failure to maintain ATP levels in the face of increased energy demand. In this study, we analyzed the cardiac metabolome after seven days of pressure overload and found an increase in long-chain and medium-chain fatty acid metabolites in wild-type hearts. This response was attenuated in mice that lack expression of CHIP (CHIP-/-). These findings suggest that CHIP may play an essential role in regulating oxidative metabolism pathways that are regulated, in part, by the nuclear receptor PPARα (Peroxisome Proliferator-Activated Receptor alpha). Next, we challenged CHIP-/- mice with the PPARα agonist called fenofibrate. We found that treating CHIP-/- mice with fenofibrate for five weeks under non-pressure overload conditions resulted in decreased skeletal muscle mass, compared to wild-type mice, and a marked increase in cardiac fibrosis accompanied by a decrease in cardiac function. Fenofibrate resulted in decreased mitochondrial cristae density in CHIP-/- hearts as well as decreased expression of genes involved in the initiation of autophagy and mitophagy, which suggests that a metabolic challenge, in the absence of CHIP expression, impacts pathways that contribute to mitochondrial quality control. In conclusion, in the absence of functional CHIP expression, fenofibrate results in unexpected skeletal muscle and cardiac pathologies. These findings are particularly relevant to patients harboring loss-of-function mutations in CHIP and are consistent with a prominent role for CHIP in regulating cardiac metabolism.

14.
Am J Cancer Res ; 7(9): 1948-1958, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28979816

RESUMEN

Cancer cachexia is a severe wasting syndrome characterized by the progressive loss of lean body mass and systemic inflammation. Up to 80% of cancer patients experience cachexia, with 20-30% of cancer-related deaths directly linked to cachexia. Despite efforts to identify early cachexia and cancer relapse, clinically useful markers are lacking. Recently, we identified the role of muscle-specific ubiquitin ligases Atrogin-1 (MAFbx, FBXO32) and Muscle Ring Finger-1 in the pathogenesis of cardiac atrophy and hypertrophy. We hypothesized that during cachexia, the Atrogin-1 and MuRF1 ubiquitin ligases are released from muscle and migrate to the circulation where they could be detected and serve as a cachexia biomarker. To test this, we induced cachexia in mice using the C26 adenocarcinoma cells or vehicle (control). Body weight, tumor volume, and food consumption were measured from inoculation until ~day 14 to document cachexia. Western blot analysis of serum identified the presence of Atrogin-1 and MuRF1 with unique post-translational modifications consistent with mono- and poly- ubiquitination of Atrogin-1 and MuRF1 found only in cachectic serum. These findings suggest that both increased Atrogin-1 and the presence of unique post-translational modifications may serve as a surrogate marker specific for cachexia.

15.
Arterioscler Thromb Vasc Biol ; 37(8): 1524-1535, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28596374

RESUMEN

OBJECTIVE: Bacterial endotoxin (lipopolysaccharide)-mediated sepsis involves dysregulated systemic inflammation, which injures the lung and other organs, often fatally. Vascular endothelial cells act as both targets and mediators of lipopolysaccharide-induced inflammatory responses. Dysfunction of endothelium results in increases of proinflammatory cytokine production and permeability leakage. BMPER (bone morphogenetic protein-binding endothelial regulator), an extracellular modulator of bone morphogenetic protein signaling, has been identified as a vital component in chronic endothelial inflammatory responses and atherosclerosis. However, it is unclear whether BMPER also regulates inflammatory response in an acute setting such as sepsis. To address this question, we investigated the role of BMPER during lipopolysaccharide-induced acute lung injury. APPROACH AND RESULTS: Mice missing 1 allele of BMPER (BMPER+/- mice used in the place of BMPER-/- mice that die at birth) were used for lipopolysaccharide challenge. Lipopolysaccharide-induced pulmonary inflammation and injury was reduced in BMPER+/- mice as shown by several measures, including survival rate, infiltration of inflammatory cells, edema, and production of proinflammatory cytokines. Mechanistically, we have demonstrated that BMPER is required and sufficient for the activation of nuclear factor of activated T cells c1. This BMPER-induced nuclear factor of activated T cells activation is coordinated by multiple signaling pathways, including bone morphogenetic protein-independent low-density lipoprotein receptor-related protein 1-extracellular signal-regulated kinase activation, calcineurin signaling, and low-density lipoprotein receptor-related protein 1ß-mediated nuclear factor 45 nuclear export in response to BMPER treatment. CONCLUSIONS: We conclude that BMPER plays a pivotal role in pulmonary inflammatory response, which provides new therapeutic options against sepsis shock. The new signaling pathway initiated by BMPER/low-density lipoprotein receptor-related protein 1 axis broadens our understanding about BMPER's role in vascular homeostasis.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Proteínas Portadoras/metabolismo , Células Endoteliales/metabolismo , Endotoxinas , Pulmón/irrigación sanguínea , Neumonía/metabolismo , Receptores de LDL/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/patología , Animales , Apoptosis , Permeabilidad Capilar , Proteínas Portadoras/genética , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/patología , Predisposición Genética a la Enfermedad , Haploinsuficiencia , Mediadores de Inflamación/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Transcripción NFATC/metabolismo , Proteína del Factor Nuclear 45/metabolismo , Fenotipo , Neumonía/inducido químicamente , Neumonía/genética , Neumonía/patología , Interferencia de ARN , Receptores de LDL/genética , Factores de Tiempo , Transfección , Proteínas Supresoras de Tumor/genética
16.
Nat Commun ; 8: 14960, 2017 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-28393867

RESUMEN

Low-density lipoprotein receptor-related protein 1 (LRP1) regulates lipid and glucose metabolism in liver and adipose tissue. It is also involved in central nervous system regulation of food intake and leptin signalling. Here we demonstrate that endothelial Lrp1 regulates systemic energy homeostasis. Mice with endothelial-specific Lrp1 deletion display improved glucose sensitivity and lipid profiles combined with increased oxygen consumption during high-fat-diet-induced obesity. We show that the intracellular domain of Lrp1 interacts with the nuclear receptor Pparγ, a central regulator of lipid and glucose metabolism, acting as its transcriptional co-activator in endothelial cells. Therefore, Lrp1 not only acts as an endocytic receptor but also directly participates in gene transcription. Our findings indicate an underappreciated functional role of endothelium in maintaining systemic energy homeostasis.


Asunto(s)
Células Endoteliales/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , PPAR gamma/metabolismo , Adipoquinas/sangre , Animales , Antígenos CD36/metabolismo , Colesterol/metabolismo , Dieta Alta en Grasa , Endocitosis/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Células HEK293 , Humanos , Resistencia a la Insulina , Lípidos/sangre , Ratones Endogámicos C57BL , Ratones Noqueados , Especificidad de Órganos/efectos de los fármacos , Condicionamiento Físico Animal , Pioglitazona , Unión Proteica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tiazolidinedionas/farmacología , Transcripción Genética , Aumento de Peso
17.
Cardiovasc Pathol ; 25(2): 127-140, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26764147

RESUMEN

The muscle-specific ubiquitin ligase muscle ring finger-1 (MuRF1) is critical in regulating both pathological and physiological cardiac hypertrophy in vivo. Previous work from our group has identified MuRF1's ability to inhibit serum response factor and insulin-like growth factor-1 signaling pathways (via targeted inhibition of cJun as underlying mechanisms). More recently, we have identified that MuRF1 inhibits fatty acid metabolism by targeting peroxisome proliferator-activated receptor alpha (PPARα) for nuclear export via mono-ubiquitination. Since MuRF1-/- mice have an estimated fivefold increase in PPARα activity, we sought to determine how challenge with the PPARα agonist fenofibrate, a PPARα ligand, would affect the heart physiologically. In as little as 3 weeks, feeding with fenofibrate/chow (0.05% wt/wt) induced unexpected pathological cardiac hypertrophy not present in age-matched sibling wild-type (MuRF1+/+) mice, identified by echocardiography, cardiomyocyte cross-sectional area, and increased beta-myosin heavy chain, brain natriuretic peptide, and skeletal muscle α-actin mRNA. In addition to pathological hypertrophy, MuRF1-/- mice had an unexpected differential expression in genes associated with the pleiotropic effects of fenofibrate involved in the extracellular matrix, protease inhibition, hemostasis, and the sarcomere. At both 3 and 8 weeks of fenofibrate treatment, the differentially expressed MuRF1-/- genes most commonly had SREBP-1 and E2F1/E2F promoter regions by TRANSFAC analysis (54 and 50 genes, respectively, of the 111 of the genes >4 and <-4 log fold change; P ≤ .0004). These studies identify MuRF1's unexpected regulation of fenofibrate's pleiotropic effects and bridges, for the first time, MuRF1's regulation of PPARα, cardiac hypertrophy, and hemostasis.


Asunto(s)
Cardiomegalia/inducido químicamente , Cardiomegalia/metabolismo , Fenofibrato/farmacología , Corazón/efectos de los fármacos , Hipolipemiantes/farmacología , Proteínas Musculares/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Cardiomegalia/patología , Femenino , Masculino , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Proteínas Musculares/deficiencia , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Distribución Aleatoria , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas de Motivos Tripartitos/deficiencia , Ubiquitina-Proteína Ligasas/deficiencia
18.
Arterioscler Thromb Vasc Biol ; 36(2): 350-60, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26634655

RESUMEN

OBJECTIVE: We recently demonstrated that low-density lipoprotein receptor-related protein 1 (LRP1) is required for cardiovascular development in zebrafish. However, what role LRP1 plays in angiogenesis remains to be determined. To better understand the role of LRP1 in endothelial cell function, we investigated how LRP1 regulates mouse retinal angiogenesis. APPROACH AND RESULTS: Depletion of LRP1 in endothelial cells results in increased retinal neovascularization in a mouse model of oxygen-induced retinopathy. Specifically, retinas in mice lacking endothelial LRP1 have more branching points and angiogenic sprouts at the leading edge of the newly formed vasculature. Increased endothelial proliferation as detected by Ki67 staining was observed in LRP1-deleted retinal endothelium in response to hypoxia. Using an array of biochemical and cell biology approaches, we demonstrate that poly(ADP-ribose) polymerase-1 (PARP-1) directly interacts with LRP1 in human retinal microvascular endothelial cells. This interaction between LRP1 and PARP-1 decreases under hypoxic condition. Moreover, LRP1 knockdown results in increased PARP-1 activity and subsequent phosphorylation of both retinoblastoma protein and cyclin-dependent kinase 2, which function to promote cell cycle progression and angiogenesis. CONCLUSIONS: Together, these data reveal a pivotal role for LRP1 in endothelial cell proliferation and retinal neovascularization induced by hypoxia. In addition, we demonstrate for the first time the interaction between LRP1 and PARP-1 and the LRP1-dependent regulation of PARP-1-signaling pathways. These data bring forth the possibility of novel therapeutic approaches for pathological angiogenesis.


Asunto(s)
Proliferación Celular , Células Endoteliales/enzimología , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Receptores de LDL/metabolismo , Neovascularización Retiniana/enzimología , Vasos Retinianos/enzimología , Proteínas Supresoras de Tumor/metabolismo , Animales , Ciclo Celular , Hipoxia de la Célula , Quinasa 2 Dependiente de la Ciclina/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Genotipo , Células HEK293 , Humanos , Hipoxia/complicaciones , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Ratones Noqueados , Fenotipo , Fosforilación , Poli(ADP-Ribosa) Polimerasa-1 , Interferencia de ARN , Receptores de LDL/deficiencia , Receptores de LDL/genética , Neovascularización Retiniana/etiología , Neovascularización Retiniana/genética , Neovascularización Retiniana/patología , Vasos Retinianos/patología , Proteína de Retinoblastoma/metabolismo , Transducción de Señal , Factores de Tiempo , Transfección , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética
19.
PLoS One ; 10(9): e0139209, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26418455

RESUMEN

Formation of the cardiac valves is an essential component of cardiovascular development. Consistent with the role of the bone morphogenetic protein (BMP) signaling pathway in cardiac valve formation, embryos that are deficient for the BMP regulator BMPER (BMP-binding endothelial regulator) display the cardiac valve anomaly mitral valve prolapse. However, how BMPER deficiency leads to this defect is unknown. Based on its expression pattern in the developing cardiac cushions, we hypothesized that BMPER regulates BMP2-mediated signaling, leading to fine-tuned epithelial-mesenchymal transition (EMT) and extracellular matrix deposition. In the BMPER-/- embryo, EMT is dysregulated in the atrioventricular and outflow tract cushions compared with their wild-type counterparts, as indicated by a significant increase of Sox9-positive cells during cushion formation. However, proliferation is not impaired in the developing BMPER-/- valves. In vitro data show that BMPER directly binds BMP2. In cultured endothelial cells, BMPER blocks BMP2-induced Smad activation in a dose-dependent manner. In addition, BMP2 increases the Sox9 protein level, and this increase is inhibited by co-treatment with BMPER. Consistently, in the BMPER-/- embryos, semi-quantitative analysis of Smad activation shows that the canonical BMP pathway is significantly more active in the atrioventricular cushions during EMT. These results indicate that BMPER negatively regulates BMP-induced Smad and Sox9 activity during valve development. Together, these results identify BMPER as a regulator of BMP2-induced cardiac valve development and will contribute to our understanding of valvular defects.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Proteínas Portadoras/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Válvulas Cardíacas/embriología , Factor de Transcripción SOX9/metabolismo , Animales , Proteínas Portadoras/biosíntesis , Línea Celular , Proliferación Celular , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Transducción de Señal
20.
J Mol Cell Cardiol ; 77: 86-101, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25257914

RESUMEN

The cell-permeant peptide inhibitor of MAPKAP kinase 2 (MK2), MMI-0100, inhibits MK2 and downstream fibrosis and inflammation. Recent studies have demonstrated that MMI-0100 reduces intimal hyperplasia in a mouse vein graft model, pulmonary fibrosis in a murine bleomycin-induced model and development of adhesions in conjunction with abdominal surgery. MK2 is critical to the pathogenesis of ischemic heart injury as MK2(-/-) mice are resistant to ischemic remodeling. Therefore, we tested the hypothesis that inhibiting MK2 with MMI-0100 would protect the heart after acute myocardial infarction (AMI) in vivo. AMI was induced by placing a permanent LAD coronary ligation. When MMI-0100 peptide was given 30 min after permanent LAD coronary artery ligation, the resulting fibrosis was reduced/prevented ~50% at a 2 week time point, with a corresponding improvement in cardiac function and decrease in left ventricular dilation. In cultured cardiomyocytes and fibroblasts, MMI-0100 inhibited MK2 to reduce cardiomyocyte caspase 3/7 activity, while enhancing primary cardiac fibroblast caspase 3/7 activity, which may explain MMI-0100's salvage of cardiac function and anti-fibrotic effects in vivo. These findings suggest that therapeutic inhibition of MK2 after acute MI, using rationally-designed cell-permeant peptides, inhibits cardiac fibrosis and maintains cardiac function by mechanisms that involve inhibiting cardiomyocyte apoptosis, while enhancing primary cardiac fibroblast cell death.


Asunto(s)
Fibroblastos/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Infarto del Miocardio/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Péptidos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Apoptosis , Línea Celular , Fibroblastos/enzimología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones Endogámicos C57BL , Miocardio/patología , Miocitos Cardíacos/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Fibrosis Pulmonar/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...