Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Annu Rev Pharmacol Toxicol ; 64: 577-598, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37788493

RESUMEN

Seizures and other forms of neurovolatility are emerging as druggable prodromal mechanisms that link traumatic brain injury (TBI) to the progression of later dementias. TBI neurotrauma has both acute and long-term impacts on health, and TBI is a leading risk factor for dementias, including chronic traumatic encephalopathy and Alzheimer's disease. Treatment of TBI already considers acute management of posttraumatic seizures and epilepsy, and impressive efforts have optimized regimens of antiepileptic drugs (AEDs) toward that goal. Here we consider that expanding these management strategies could determine which AED regimens best prevent dementia progression in TBI patients. Challenges with this prophylactic strategy include the potential consequences of prolonged AED treatment and that a large subset of patients are refractory to available AEDs. Addressing these challenges is warranted because the management of seizure activity following TBI offers a rare opportunity to prevent the onset or progression of devastating dementias.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Demencia , Epilepsia Postraumática , Humanos , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Epilepsia Postraumática/complicaciones , Epilepsia Postraumática/tratamiento farmacológico , Epilepsia Postraumática/prevención & control , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/complicaciones , Convulsiones/tratamiento farmacológico , Convulsiones/etiología , Demencia/tratamiento farmacológico , Demencia/prevención & control
2.
Sci Rep ; 11(1): 11515, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34075141

RESUMEN

In light of legislative changes and the widespread use of cannabis as a recreational and medicinal drug, delayed effects of cannabis upon brief exposure during embryonic development are of high interest as early pregnancies often go undetected. Here, zebrafish embryos were exposed to cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) until the end of gastrulation (1-10 h post-fertilization) and analyzed later in development (4-5 days post-fertilization). In order to measure neural activity, we implemented Calcium-Modulated Photoactivatable Ratiometric Integrator (CaMPARI) and optimized the protocol for a 96-well format complemented by locomotor analysis. Our results revealed that neural activity was decreased by CBD more than THC. At higher doses, both cannabinoids could dramatically reduce neural activity and locomotor activity. Interestingly, the decrease was more pronounced when CBD and THC were combined. At the receptor level, CBD-mediated reduction of locomotor activity was partially prevented using cannabinoid type 1 and 2 receptor inhibitors. Overall, we report that CBD toxicity occurs via two cannabinoid receptors and is synergistically enhanced by THC exposure to negatively impact neural activity late in larval development. Future studies are warranted to reveal other cannabinoids and their receptors to understand the implications of cannabis consumption on fetal development.


Asunto(s)
Cannabidiol/toxicidad , Dronabinol/toxicidad , Embrión no Mamífero/embriología , Desarrollo Embrionario/efectos de los fármacos , Optogenética , Pez Cebra/embriología , Animales , Conducta Animal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Desarrollo Embrionario/genética , Locomoción/efectos de los fármacos , Locomoción/genética , Pez Cebra/genética
3.
Elife ; 102021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33527898

RESUMEN

Traumatic brain injury (TBI) is a prominent risk factor for dementias including tauopathies like chronic traumatic encephalopathy (CTE). The mechanisms that promote prion-like spreading of Tau aggregates after TBI are not fully understood, in part due to lack of tractable animal models. Here, we test the putative role of seizures in promoting the spread of tauopathy. We introduce 'tauopathy reporter' zebrafish expressing a genetically encoded fluorescent Tau biosensor that reliably reports accumulation of human Tau species when seeded via intraventricular brain injections. Subjecting zebrafish larvae to a novel TBI paradigm produced various TBI features including cell death, post-traumatic seizures, and Tau inclusions. Bath application of dynamin inhibitors or anticonvulsant drugs rescued TBI-induced tauopathy and cell death. These data suggest a role for seizure activity in the prion-like seeding and spreading of tauopathy following TBI. Further work is warranted regarding anti-convulsants that dampen post-traumatic seizures as a route to moderating subsequent tauopathy.


Traumatic brain injury can result from direct head concussions, rapid head movements, or a blast wave generated by an explosion. Traumatic brain injury often causes seizures in the short term and is a risk factor for certain dementias, including Alzheimer's disease and chronic traumatic encephalopathy in the long term. A protein called Tau undergoes a series of chemical changes in these dementias that makes it accumulate, form toxic filaments and kill neurons. The toxic abnormal Tau proteins are initially found only in certain regions of the brain, but they spread as the disease progresses. Previous studies in Alzheimer's disease and other diseases where Tau proteins are abnormal suggest that Tau can spread between neighboring neurons and this can be promoted by neuron activity. However, scientists do not know whether similar mechanisms are at work following traumatic brain injury. Given that seizures are very common following traumatic brain injury, could they be partly responsible for promoting dementia? To investigate this, researchers need animal models in which they can measure neural activity associated with traumatic brain injury and observe the spread of abnormal Tau proteins. Alyenbaawi et al. engineered zebrafish so that their Tau proteins would be fluorescent, making it possible to track the accumulation of aggregated Tau protein in the brain. Next, they invented a simple way to perform traumatic brain injury on zebrafish larvae by using a syringe to produce a pressure wave. After this procedure, many of the fish exhibited features consistent with progression towards dementia, and seizure-like behaviors. The results showed that post-traumatic seizures are linked to the spread of aggregates of abnormal Tau following traumatic brain injury. Alyenbaawi et al. also found that anticonvulsant drugs can lower the levels of abnormal Tau proteins in neurons, preventing cell death, and could potentially ameliorate dementias associated with traumatic brain injury. These drugs are already being used to prevent post-traumatic epilepsy, but more research is needed to confirm whether they reduce the risk or severity of Tau-related neurodegeneration.


Asunto(s)
Lesiones Traumáticas del Encéfalo/complicaciones , Convulsiones/complicaciones , Tauopatías/tratamiento farmacológico , Animales , Animales Modificados Genéticamente , Anticonvulsivantes/farmacología , Muerte Celular/efectos de los fármacos , Dinaminas/antagonistas & inhibidores , Proteínas Fluorescentes Verdes/genética , Larva , Ratones , Convulsiones/tratamiento farmacológico , Tauopatías/etiología , Pez Cebra , Proteínas tau/metabolismo
4.
Epilepsia ; 61(8): 1678-1690, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32652600

RESUMEN

OBJECTIVE: Voltage-gated potassium channels of the KCNQ (Kv7) family are targeted by a variety of activator compounds with therapeutic potential for treatment of epilepsy. Exploration of this drug class has revealed a variety of effective compounds with diverse mechanisms. In this study, we aimed to clarify functional criteria for categorization of Kv7 activator compounds, and to compare the effects of prototypical drugs in a zebrafish larvae model. METHODS: In vitro electrophysiological approaches with recombinant ion channels were used to highlight functional properties important for classification of drug mechanisms. We also benchmarked the effects of representative antiepileptic Kv7 activator drugs using behavioral seizure assays of zebrafish larvae and in vivo Ca2+ imaging with the ratiometric Ca2+ sensor CaMPARI. RESULTS: Drug effects on channel gating kinetics, and drug sensitivity profiles to diagnostic channel mutations, were used to highlight properties for categorization of Kv7 activator drugs into voltage sensor-targeted or pore-targeted subtypes. Quantifying seizures and ratiometric Ca2+ imaging in freely swimming zebrafish larvae demonstrated that while all Kv7 activators tested lead to suppression of neuronal excitability, pore-targeted activators (like ML213 and retigabine) strongly suppress seizure behavior, whereas ICA-069673 triggers a seizure-like hypermotile behavior. SIGNIFICANCE: This study suggests criteria to categorize antiepileptic Kv7 activator drugs based on their underlying mechanism. We also establish the use of in vivo CaMPARI as a tool for screening effects of anticonvulsant drugs on neuronal excitability in zebrafish. In summary, despite a shared ability to suppress neuronal excitability, our findings illustrate how mechanistic differences between Kv7 activator subtypes influence their effects on heteromeric channels and lead to vastly different in vivo outcomes.


Asunto(s)
Anilidas/farmacología , Anticonvulsivantes/farmacología , Compuestos Bicíclicos con Puentes/farmacología , Calcio/metabolismo , Carbamatos/farmacología , Epilepsia/tratamiento farmacológico , Canales de Potasio KCNQ/efectos de los fármacos , Neuronas/efectos de los fármacos , Fenilendiaminas/farmacología , Convulsiones/tratamiento farmacológico , Animales , Animales Modificados Genéticamente , Anticonvulsivantes/clasificación , Modelos Animales de Enfermedad , Resistencia a Medicamentos/genética , Epilepsia/metabolismo , Técnicas In Vitro , Canales de Potasio KCNQ/genética , Canales de Potasio KCNQ/metabolismo , Canal de Potasio KCNQ2/efectos de los fármacos , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/efectos de los fármacos , Canal de Potasio KCNQ3/genética , Canal de Potasio KCNQ3/metabolismo , Proteínas Luminiscentes/genética , Potenciales de la Membrana , Mutación , Neuronas/metabolismo , Imagen Óptica , Técnicas de Placa-Clamp , Convulsiones/metabolismo , Pez Cebra
5.
Exp Neurol ; 328: 113283, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32165257

RESUMEN

It has been proposed that Amyloid ß Precursor Protein (APP) might act as a rheostat controlling neuronal excitability, but mechanisms have remained untested. APP and its catabolite Aß are known to impact upon synapse function and dysfunction via their interaction with the prion protein (PrPC), suggesting a candidate pathway. Here we test if PrPC is required for this APP function in vivo, perhaps via modulating mGluR5 ion channels. We engineered zebrafish to lack homologs of PrPC and APP, allowing us to assess their purported genetic and physiological interactions in CNS development. We generated four appa null alleles as well as prp1-/-;appa-/- double mutants (engineering of prp1 mutant alleles is described elsewhere). Unexpectedly, appa-/- and compound prp1-/-;appa-/- mutants are viable and lacked overt phenotypes (except being slightly smaller than wildtype fish at some developmental stages). Zebrafish prp1-/- mutants were substantially more sensitive to appa knockdown than wildtype fish, and both zebrafish prp1 and mammalian Prnp mRNA were significantly able to partially rescue this effect. Further, appa-/- mutants exhibited increased seizures upon exposure to low doses of convulsant. The mechanism of this seizure susceptibility requires prp1 insomuch that seizures were significantly dampened to wildtype levels in prp1-/-;appa-/- mutants. Inhibiting mGluR5 channels, which may be downstream of PrPC, increased seizure intensity only in prp1-/- mutants, and this seizure mechanism required intact appa. Taken together, these results support an intriguing genetic interaction between prp1 and appa with their shared roles impacting upon neuron hyperexcitability, thus complementing and extending past works detailing their biochemical interaction(s).


Asunto(s)
Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Susceptibilidad a Enfermedades/metabolismo , Proteínas Priónicas/metabolismo , Convulsiones/genética , Convulsiones/metabolismo , Animales , Ratones , Mutación , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA