Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Cancer ; 152(3): 511-523, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36069222

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is characterized by abundant stroma, the main cellular constituents of which are cancer-associated fibroblasts (CAFs). Stroma-targeting agents have been proposed to improve the poor outcome of current treatments. However, clinical trials using these agents showed disappointing results. Heterogeneity in the PDAC CAF population was recently delineated demonstrating that both tumor-promoting and tumor-suppressive activities co-exist in the stroma. Here, we aimed to identify biomarkers for the CAF population that contribute to a favorable outcome. RNA-sequencing reads from patient-derived xenografts (PDXs) were mapped to the human and mouse genome to allocate the expression of genes to the tumor or stroma. Survival meta-analysis for stromal genes was performed and applied to human protein atlas data to identify circulating biomarkers. The candidate protein was perturbed in co-cultures and assessed in existing and novel single-cell gene expression analysis from control, pancreatitis, pancreatitis-recovered and PDAC mouse models. Serum levels of the candidate biomarker were measured in two independent cohorts totaling 148 PDAC patients and related them to overall survival. Osteoglycin (OGN) was identified as a candidate serum prognostic marker. Single-cell analysis indicated that Ogn is derived from a subgroup of inflammatory CAFs. Ogn-expressing fibroblasts are distinct from resident healthy pancreatic stellate cells and arise during pancreatitis. Serum OGN levels were prognostic for favorable overall survival in two independent PDAC cohorts (HR = 0.47, P = .042 and HR = 0.53, P = .006). Altogether, we conclude that high circulating OGN levels inform on a previously unrecognized subgroup of CAFs and predict favorable outcomes in resectable PDAC.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pancreatitis , Humanos , Ratones , Animales , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Pancreatitis/patología , Microambiente Tumoral , Neoplasias Pancreáticas
2.
Cell Rep ; 37(3): 109852, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34686335

RESUMEN

Effective treatments for pancreatic ductal adenocarcinoma (PDAC) are lacking, and targeted agents have demonstrated limited efficacy. It has been speculated that a rare population of cancer stem cells (CSCs) drives growth, therapy resistance, and rapid metastatic progression in PDAC. These CSCs demonstrate high clonogenicity in vitro and tumorigenic potential in vivo. However, their relevance in established PDAC tissue has not been determined. Here, we use marker-independent stochastic clonal labeling, combined with quantitative modeling of tumor expansion, to uncover PDAC tissue growth dynamics. We find that in contrast to the CSC model, all PDAC cells display clonogenic potential in situ. Furthermore, the proximity to activated cancer-associated fibroblasts determines tumor cell clonogenicity. This means that the microenvironment is dominant in defining the clonogenic activity of PDAC cells. Indeed, manipulating the stroma by Hedgehog pathway inhibition alters the tumor growth mode, revealing that tumor-stroma crosstalk shapes tumor growth dynamics and clonal architecture.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Linaje de la Célula , Células Madre Neoplásicas/patología , Neoplasias Pancreáticas/patología , Microambiente Tumoral , Anilidas/farmacología , Animales , Antineoplásicos/farmacología , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Comunicación Celular , Línea Celular Tumoral , Proliferación Celular , Femenino , Proteínas Hedgehog/antagonistas & inhibidores , Proteínas Hedgehog/metabolismo , Humanos , Masculino , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Piridinas/farmacología , Transducción de Señal , Células del Estroma/metabolismo , Células del Estroma/patología , Factores de Tiempo , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Cell Stem Cell ; 28(11): 2009-2019.e4, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34358441

RESUMEN

The tissue dynamics that govern maintenance and regeneration of the pancreas remain largely unknown. In particular, the presence and nature of a cellular hierarchy remains a topic of debate. Previous lineage tracing strategies in the pancreas relied on specific marker genes for clonal labeling, which left other populations untested and failed to account for potential widespread phenotypical plasticity. Here we employed a tracing system that depends on replication-induced clonal marks. We found that, in homeostasis, steady acinar replacement events characterize tissue dynamics, to which all acinar cells have an equal ability to contribute. Similarly, regeneration following pancreatitis was best characterized by an acinar self-replication model because no evidence of a cellular hierarchy was detected. In particular, rapid regeneration in the pancreas was found to be driven by an accelerated rate of acinar fission-like events. These results provide a comprehensive and quantitative model of cell dynamics in the exocrine pancreas.


Asunto(s)
Páncreas Exocrino , Pancreatitis , Células Acinares , Homeostasis , Humanos , Páncreas
4.
Cancers (Basel) ; 13(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209288

RESUMEN

Cell generation and renewal are essential processes to develop, maintain, and regenerate tissues. New cells can be generated from immature cell types, such as stem-like cells, or originate from more differentiated pre-existing cells that self-renew or transdifferentiate. The adult pancreas is a dormant organ with limited regeneration capacity, which complicates studying these processes. As a result, there is still discussion about the existence of stem cells in the adult pancreas. Interestingly, in contrast to the classical stem cell concept, stem cell properties seem to be plastic, and, in circumstances of injury, differentiated cells can revert back to a more immature cellular state. Importantly, deregulation of the balance between cellular proliferation and differentiation can lead to disease initiation, in particular to cancer formation. Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a 5-year survival rate of only ~9%. Unfortunately, metastasis formation often occurs prior to diagnosis, and most tumors are resistant to current treatment strategies. It has been proposed that a specific subpopulation of cells, i.e., cancer stem cells (CSCs), are responsible for tumor expansion, metastasis formation, and therapy resistance. Understanding the underlying mechanisms of pancreatic stem cells during homeostasis and injury might lead to new insights to understand the role of CSCs in PDAC. Therefore, in this review, we present an overview of the current literature regarding the stem cell dynamics in the pancreas during health and disease. Furthermore, we highlight the influence of the tumor microenvironment on the growth behavior of PDAC.

5.
Mol Oncol ; 15(11): 3091-3108, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33932087

RESUMEN

Pancreatic acinar cells have high plasticity and can transdifferentiate into ductal-like cells. This acinar-to-ductal metaplasia (ADM) contributes to tissue maintenance but may also contribute to the premalignant transformation that can eventually progress to pancreatic ductal adenocarcinoma (PDAC). Macrophages are key players in ADM, and macrophage-secreted matrix metalloproteinase (MMP)-9 induces ADM through yet unknown mechanisms. As we previously identified MMP9 as a novel agonist of protease-activated receptor 1 (PAR1), a receptor that is known to orchestrate the cross-talk between macrophages and tumor cells in PDAC, we here assessed the contribution of PAR1 to pancreatic cell fates. We found that genetic deficiency for PAR1 increases acinar gene expression programs in the healthy pancreas and that PAR1 deficiency limits ductal transdifferentiation in experimental systems for ADM. Moreover, PAR1 silencing in PDAC cells increases acinar marker expression. Changes in PDAC cell lines were associated with a downregulation of known Myc-target genes, and Myc inhibition mimics PAR1 deficiency in enhancing acinar programs in healthy organoids and PDAC cells. Overall, we identify the PAR1-Myc axis as a driver of ductal cell fates in premalignant pancreas and PDAC. Moreover, we show that cellular plasticity is not unique to acinar cells and that ductal regeneration into acinar-like cells is possible even in the context of oncogenic KRAS activation.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Células Acinares/metabolismo , Carcinoma Ductal Pancreático/patología , Transformación Celular Neoplásica/patología , Humanos , Páncreas/patología , Neoplasias Pancreáticas/patología , Receptor PAR-1/genética , Receptor PAR-1/metabolismo
6.
Nat Protoc ; 14(9): 2648-2671, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31420599

RESUMEN

Lineage tracing is a powerful tool that can be used to uncover cell fates. Here, we describe a novel method for the quantitative analysis of clonal dynamics in grafted cancer tissues. The protocol involves the preparation and validation of cells for lineage tracing, establishment of grafts and label induction, analysis of clone-size distribution and fitting of the experimental data to a mathematical tumor growth model. In contrast to other lineage-tracing strategies, the method described here assesses stem cell functionality and infers tumor expansion dynamics independently of molecular markers such as putative cancer stem cell (CSC)-specific genes. The experimental system and analytical framework presented can be used to quantify clonal advantages that specific mutations provide, in both the absence and presence of (targeted) therapeutic agents. This protocol typically takes ~20 weeks to complete from cell line selection to inference of growth dynamics, depending on the grafted cancer growth rate.


Asunto(s)
Linaje de la Célula , Rastreo Celular/métodos , Células Madre Neoplásicas , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/fisiología , Xenoinjertos , Humanos , Ratones , Neoplasias/fisiopatología , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/fisiología
7.
Proc Natl Acad Sci U S A ; 116(13): 6140-6145, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30850544

RESUMEN

Cancer evolution is predominantly studied by focusing on differences in the genetic characteristics of malignant cells within tumors. However, the spatiotemporal dynamics of clonal outgrowth that underlie evolutionary trajectories remain largely unresolved. Here, we sought to unravel the clonal dynamics of colorectal cancer (CRC) expansion in space and time by using a color-based clonal tracing method. This method involves lentiviral red-green-blue (RGB) marking of cell populations, which enabled us to track individual cells and their clonal outgrowth during tumor initiation and growth in a xenograft model. We found that clonal expansion largely depends on the location of a clone, as small clones reside in the center and large clones mostly drive tumor growth at the border. These dynamics are recapitulated in a computational model, which confirms that the clone position within a tumor rather than cell-intrinsic features, is crucial for clonal outgrowth. We also found that no significant clonal loss occurs during tumor growth and clonal dispersal is limited in most models. Our results imply that, in addition to molecular features of clones such as (epi-)genetic differences between cells, clone location and the geometry of tumor growth are crucial for clonal expansion. Our findings suggest that either microenvironmental signals on the tumor border or differences in physical properties within the tumor, are major contributors to explain heterogeneous clonal expansion. Thus, this study provides further insights into the dynamics of solid tumor growth and progression, as well as the origins of tumor cell heterogeneity in a relevant model system.


Asunto(s)
Neoplasias Colorrectales/patología , Animales , Linaje de la Célula , Células Clonales , Neoplasias Colorrectales/genética , Femenino , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Análisis Espacio-Temporal
8.
Mol Cell Oncol ; 6(1): 1540235, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30788417

RESUMEN

By using marker-free lineage tracing in combination with quantitative analysis, we recently revealed cancer stem cell functionality in established human colon cancer is not intrinsically defined, but fully spatiotemporally regulated.

9.
Nat Cell Biol ; 20(10): 1193-1202, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30177776

RESUMEN

Solid malignancies have been speculated to depend on cancer stem cells (CSCs) for expansion and relapse after therapy. Here we report on quantitative analyses of lineage tracing data from primary colon cancer xenograft tissue to assess CSC functionality in a human solid malignancy. The temporally obtained clone size distribution data support a model in which stem cell function in established cancers is not intrinsically, but is entirely spatiotemporally orchestrated. Functional stem cells that drive tumour expansion predominantly reside at the tumour edge, close to cancer-associated fibroblasts. Hence, stem cell properties change in time depending on the cell location. Furthermore, although chemotherapy enriches for cells with a CSC phenotype, in this context functional stem cell properties are also fully defined by the microenvironment. To conclude, we identified osteopontin as a key cancer-associated fibroblast-produced factor that drives in situ clonogenicity in colon cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Proliferación Celular/genética , Células Cultivadas , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Desnudos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Oxaliplatino/administración & dosificación , Tamoxifeno/administración & dosificación , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...