Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36679344

RESUMEN

We report on solving of two intriguing issues concerning the inscription of surface relief gratings within azopolymer thin films under irradiation with SS, PP and RL interference patterns. For this, we utilize the orientation approach and viscoplastic modeling in combination with experimental results, where the change in surface topography is acquired in situ during irradiation with modulated light. First, the initial orientation state of polymer backbones is proved to be responsible for the contradictory experimental reports on the efficiency of the SS interference pattern. Different orientation states can influence not only the phase of SS grating but also its height, which is experimentally confirmed by using special pretreatments. Second, the faster growth of gratings inscribed by the RL interference pattern is shown to be promoted by a weak photosoftening effect. Overall, the modeled results are in good agreement with the order of relative growth efficiency: RL-PP-SS.

2.
Clin Diabetes ; 39(4): 389-396, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34866780

RESUMEN

This article offers clinicians resources and an overview for supporting gender-diverse individuals with diabetes. Creating a supportive office environment is crucial to providing optimal diabetes care for patients who identify as transgender.

3.
Diabetes Technol Ther ; 21(6): 356-363, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31095423

RESUMEN

Background: Typically, closed-loop control (CLC) studies excluded patients with significant hypoglycemia. We evaluated the effectiveness of hybrid CLC (HCLC) versus sensor-augmented pump (SAP) in reducing hypoglycemia in this high-risk population. Methods: Forty-four subjects with type 1 diabetes, 25 women, 37 ± 2 years old, HbA1c 7.4% ± 0.2% (57 ± 1.5 mmol/mol), diabetes duration 19 ± 2 years, on insulin pump, were enrolled at the University of Virginia (N = 33) and Stanford University (N = 11). Eligibility: increased risk of hypoglycemia confirmed by 1 week of blinded continuous glucose monitor (CGM); randomized to 4 weeks of home use of either HCLC or SAP. Primary/secondary outcomes: risk for hypoglycemia measured by the low blood glucose index (LBGI)/CGM-based time in ranges. Results: Values reported: mean ± standard deviation. From baseline to the final week of study: LBGI decreased more on HCLC (2.51 ± 1.17 to 1.28 ± 0.5) than on SAP (2.1 ± 1.05 to 1.79 ± 0.98), P < 0.001; percent time below 70 mg/dL (3.9 mmol/L) decreased on HCLC (7.2% ± 5.3% to 2.0% ± 1.4%) but not on SAP (5.8% ± 4.7% to 4.8% ± 4.5%), P = 0.001; percent time within the target range 70-180 mg/dL (3.9-10 mmol/L) increased on HCLC (67.8% ± 13.5% to 78.2% ± 10%) but decreased on SAP (65.6% ± 12.9% to 59.6% ± 16.5%), P < 0.001; percent time above 180 mg/dL (10 mmol/L) decreased on HCLC (25.1% ± 15.3% to 19.8% ± 10.1%) but increased on SAP (28.6% ± 14.6% to 35.6% ± 17.6%), P = 0.009. Mean glucose did not change significantly on HCLC (144.9 ± 27.9 to 143.8 ± 14.4 mg/dL [8.1 ± 1.6 to 8.0 ± 0.8 mmol/L]) or SAP (152.5 ± 24.3 to 162.4 ± 28.2 [8.5 ± 1.4 to 9.0 ± 1.6]), P = ns. Conclusions: Compared with SAP therapy, HCLC reduced the risk and frequency of hypoglycemia, while improving time in target range and reducing hyperglycemia in people at moderate to high risk of hypoglycemia.


Asunto(s)
Automonitorización de la Glucosa Sanguínea/instrumentación , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diseño de Equipo/métodos , Hipoglucemia/prevención & control , Sistemas de Infusión de Insulina , Adulto , Glucemia/análisis , Automonitorización de la Glucosa Sanguínea/métodos , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/complicaciones , Femenino , Humanos , Hiperglucemia/inducido químicamente , Hipoglucemia/etiología , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Masculino
4.
J Phys Chem B ; 122(6): 2001-2009, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29337554

RESUMEN

We report on light-induced deformation of colloidal spheres consisting of azobenzene-containing polymers. The colloids of the size between 60 nm and 2 µm in diameter were drop casted on a glass surface and irradiated with linearly polarized light. It was found that colloidal particles can be deformed up to ca. 6 times of their initial diameter. The maximum degree of deformation depends on the irradiation wavelength and intensity, as well as on colloidal particles size. On the basis of recently proposed theory by Toshchevikov et al. [ J. Phys. Chem. Lett. 2017 , 8 , 1094 ], we calculated the opto-mechanical stresses (ca. 100 MPa) needed for such giant deformations and compared them with the experimental results.

5.
Molecules ; 21(12)2016 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-27918473

RESUMEN

We demonstrate in situ recorded motion of nano-objects adsorbed on a photosensitive polymer film. The motion is induced by a mass transport of the underlying photoresponsive polymer material occurring during irradiation with interference pattern. The polymer film contains azobenzene molecules that undergo reversible photoisomerization reaction from trans- to cis-conformation. Through a multi-scale chain of physico-chemical processes, this finally results in the macro-deformations of the film due to the changing elastic properties of polymer. The topographical deformation of the polymer surface is sensitive to a local distribution of the electrical field vector that allows for the generation of dynamic changes in the surface topography during irradiation with different light interference patterns. Polymer film deformation together with the motion of the adsorbed nano-particles are recorded using a homemade set-up combining an optical part for the generation of interference patterns and an atomic force microscope for acquiring the surface deformation. The particles undergo either translational or rotational motion. The direction of particle motion is towards the topography minima and opposite to the mass transport within the polymer film. The ability to relocate particles by photo-induced dynamic topography fluctuation offers a way for a non-contact simultaneous manipulation of a large number of adsorbed particles just in air at ambient conditions.

6.
Soft Matter ; 12(9): 2593-603, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26853516

RESUMEN

In this paper two groups supporting different views on the mechanism of light induced polymer deformation argue about the respective underlying theoretical conceptions, in order to bring this interesting debate to the attention of the scientific community. The group of Prof. Nicolae Hurduc supports the model claiming that the cyclic isomerization of azobenzenes may cause an athermal transition of the glassy azobenzene containing polymer into a fluid state, the so-called photo-fluidization concept. This concept is quite convenient for an intuitive understanding of the deformation process as an anisotropic flow of the polymer material. The group of Prof. Svetlana Santer supports the re-orientational model where the mass-transport of the polymer material accomplished during polymer deformation is stated to be generated by the light-induced re-orientation of the azobenzene side chains and as a consequence of the polymer backbone that in turn results in local mechanical stress, which is enough to irreversibly deform an azobenzene containing material even in the glassy state. For the debate we chose three polymers differing in the glass transition temperature, 32 °C, 87 °C and 95 °C, representing extreme cases of flexible and rigid materials. Polymer film deformation occurring during irradiation with different interference patterns is recorded using a homemade set-up combining an optical part for the generation of interference patterns and an atomic force microscope for acquiring the kinetics of film deformation. We also demonstrated the unique behaviour of azobenzene containing polymeric films to switch the topography in situ and reversibly by changing the irradiation conditions. We discuss the results of reversible deformation of three polymers induced by irradiation with intensity (IIP) and polarization (PIP) interference patterns, and the light of homogeneous intensity in terms of two approaches: the re-orientational and the photo-fluidization concepts. Both agree in that the formation of opto-mechanically induced stresses is a necessary prerequisite for the process of deformation. Using this argument, the deformation process can be characterized either as a flow or mass transport.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...