Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Antibiotics (Basel) ; 9(6)2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32560407

RESUMEN

Acinetobacter baumannii is an important nosocomial bacterial pathogen. Multidrug-resistant isolates of A. baumannii are reported worldwide. Some A. baumannii isolates display resistance to nearly all antibiotics, making treatment of infections very challenging. As the need for new and effective antibiotics against A. baumannii becomes increasingly urgent, there is a need to understand the mechanisms of antibiotic resistance and virulence in this organism. In this work, comparative genomics was used to understand the mechanisms of antibiotic resistance and virulence in AB030, an extremely drug-resistant and hypervirulent strain of A. baumannii that is a representative of a recently emerged lineage of A. baumannii International Clone V. In order to characterize AB030, we carried out a genomic and phenotypic comparison with LAC-4, a previously described hyper-resistant and hypervirulent isolate. AB030 contains a number of antibiotic resistance- and virulence-associated genes that are not present in LAC-4. A number of these genes are present on mobile elements. This work shows the importance of characterizing the members of new lineages of A. baumannii in order to determine the development of antibiotic resistance and virulence in this organism.

2.
BMC Biochem ; 19(1): 8, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30115012

RESUMEN

BACKGROUND: Stilbene cleaving oxygenases (SCOs), also known as lignostilbene-α,ß-dioxygenases (LSDs) mediate the oxidative cleavage of the olefinic double bonds of lignin-derived intermediate phenolic stilbenes, yielding small modified benzaldehyde compounds. SCOs represent one branch of the larger carotenoid cleavage oxygenases family. Here, we describe the structural and functional characterization of an SCO-like enzyme from the soil-born, bio-control agent Pseudomonas brassicacearum. METHODS: In vitro and in vivo assays relying on visual inspection, spectrophotometric quantification, as well as liquid-chormatographic and mass spectrometric characterization were applied for functional evaluation of the enzyme. X-ray crystallographic analyses and in silico modeling were applied for structural investigations. RESULTS: In vitro assays demonstrated preferential cleavage of resveratrol, while in vivo analyses detected putative cleavage of the straight chain carotenoid, lycopene. A high-resolution structure containing the seven-bladed ß-propeller fold and conserved 4-His-Fe unit at the catalytic site, was obtained. Comparative structural alignments, as well as in silico modelling and docking, highlight potential molecular factors contributing to both the primary in vitro activity against resveratrol, as well as the putative subsidiary activities against carotenoids in vivo, for future validation. CONCLUSIONS: The findings reported here provide validation of the SCO structure, and highlight enigmatic points with respect to the potential effect of the enzyme's molecular environment on substrate specificities for future investigation.


Asunto(s)
Dioxigenasas/química , Dioxigenasas/metabolismo , Pseudomonas/enzimología , Cristalografía por Rayos X , Dioxigenasas/clasificación , Simulación del Acoplamiento Molecular , Filogenia , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Reproducibilidad de los Resultados , Microbiología del Suelo , Especificidad por Sustrato
3.
ACS Omega ; 3(4): 4213-4219, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29732452

RESUMEN

Resistance to antibiotics has become a serious problem for society, and there are increasing efforts to understand the reasons for and sources of resistance. Bacterial-encoded enzymes and transport systems, both innate and acquired, are the most frequent culprits for the development of resistance, although in Mycobacterium tuberculosis, the catalase-peroxidase, KatG, has been linked to the activation of the antitubercular drug isoniazid. While investigating a possible link between aminoglycoside antibiotics and the induction of oxidative bursts, we observed that KatG reduces susceptibility to aminoglycosides. Investigation revealed that kanamycin served as an electron donor for the peroxidase reaction, reducing the oxidized ferryl intermediates of KatG to the resting state. Loss of electrons from kanamycin was accompanied by the addition of a single oxygen atom to the aminoglycoside. The oxidized form of kanamycin proved to be less effective as an antibiotic. Kanamycin inhibited the crystallization of KatG, but the smaller, structurally related glycoside maltose did cocrystallize with KatG, providing a suggestion as to the possible binding site of kanamycin.

4.
Mol Pharm ; 14(12): 4597-4605, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29091448

RESUMEN

Tuberculosis remains one of the top causes of death worldwide, and combating its spread has been severely complicated by the emergence of drug-resistance mutations, highlighting the need for more effective drugs. Despite the resistance to isoniazid (INH) arising from mutations in the katG gene encoding the catalase-peroxidase KatG, most notably the S315T mutation, this compound is still one of the most powerful first-line antitubercular drugs, suggesting further pursuit of the development of tailored INH derivatives. The N'-acylated INH derivative with a long alkyl chain (INH-C10) has been shown to be more effective than INH against the S315T variant of Mycobacterium tuberculosis, but the molecular details of this activity enhancement are still unknown. In this work, we show that INH N'-acylation significantly reduces the rate of production of both isonicotinoyl radical and isonicotinyl-NAD by wild type KatG, but not by the S315T variant of KatG mirroring the in vivo effectiveness of the compound. Restrained and unrestrained MD simulations of INH and its derivatives at the water/membrane interface were performed and showed a higher preference of INH-C10 for the lipidic phase combined with a significantly higher membrane permeability rate (27.9 cm s-1), compared with INH-C2 or INH (3.8 and 1.3 cm s-1, respectively). Thus, we propose that INH-C10 is able to exhibit better minimum inhibitory concentration (MIC) values against certain variants because of its better ability to permeate through the lipid membrane, enhancing its availability inside the cell. MIC values of INH and INH-C10 against two additional KatG mutations (S315N and D735A) revealed that some KatG variants are able to process INH faster than INH-C10 into an effective antitubercular form (wt and S315N), while others show similar reaction rates (S315T and D735A). Altogether, our results highlight the potential of increased INH lipophilicity for treating INH-resistant strains.


Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Isoniazida/análogos & derivados , Mycobacterium tuberculosis/efectos de los fármacos , NAD/análogos & derivados , Profármacos/farmacología , Tuberculosis/tratamiento farmacológico , Acilación , Antituberculosos/química , Proteínas Bacterianas/genética , Catalasa/genética , Farmacorresistencia Bacteriana/genética , Isoniazida/farmacología , Pruebas de Sensibilidad Microbiana , Simulación de Dinámica Molecular , Mutación , Mycobacterium tuberculosis/fisiología , NAD/farmacología , Peroxidasa/genética , Profármacos/química , Tuberculosis/microbiología
5.
Biochemistry ; 56(17): 2271-2281, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28409923

RESUMEN

The unusual Met-Tyr-Trp adduct composed of cross-linked side chains along with an associated mobile Arg is essential for catalase activity in catalase-peroxidases. In addition, acidic residues in the entrance channel, in particular an Asp and a Glu ∼7 and ∼15 Å, respectively, from the heme, significantly enhance catalase activity. The mechanism by which these channel carboxylates influence catalase activity is the focus of this work. Seventeen new variants with fewer and additional acidic residues have been constructed and characterized structurally and for enzymatic activity, revealing that their effect on activity is roughly inversely proportional to their distance from the heme and adduct, suggesting that the electrostatic potential of the heme cavity may be affected. A discrete group of protonable residues are contained within a 15 Å sphere surrounding the heme iron, and a computational analysis reveals that the pKa of the distal His112, alone, is modulated within the pH range of catalase activity by the remote acidic residues in a pattern consistent with its protonated form having a key role in the catalase reaction cycle. The electrostatic potential also impacts the catalatic reaction through its influence on the charged status of the Met-Tyr-Trp adduct.


Asunto(s)
Proteínas Bacterianas/metabolismo , Burkholderia pseudomallei/enzimología , Catalasa/metabolismo , Hemoproteínas/metabolismo , Histidina/química , Modelos Moleculares , Peroxidasas/metabolismo , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Catalasa/química , Catalasa/genética , Dominio Catalítico , Biología Computacional , Cristalografía por Rayos X , Hemoproteínas/química , Hemoproteínas/genética , Concentración de Iones de Hidrógeno , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Peroxidasas/química , Peroxidasas/genética , Conformación Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Electricidad Estática , Volumetría
6.
Int J Antimicrob Agents ; 49(1): 74-80, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27939676

RESUMEN

Acinetobacter baumannii AB042, a triclosan-resistant mutant strain, was examined for modulated gene expression using whole-genome sequencing, transcriptomics and proteomics in order to understand the mechanism of triclosan resistance as well as its impact on A. baumannii. Data revealed modulated expression of the fatty acid metabolism pathway, co-factors known to play a role in the synthesis of fatty acids, as well as several transcriptional regulators. The membrane composition of the mutant revealed a decrease in C18 with a corresponding increase in C16 fatty acids compared with the parent strain A. baumannii ATCC 17978. These data indicate that A. baumannii responds to triclosan by altering the expression of genes involved in fatty acid metabolism, antibiotic resistance and amino acid metabolism.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Antiinfecciosos Locales/farmacología , Farmacorresistencia Bacteriana , Perfilación de la Expresión Génica , Genoma Bacteriano , Proteoma/análisis , Triclosán/farmacología , Metabolismo de los Lípidos , Redes y Vías Metabólicas/genética , Mutación , Análisis de Secuencia de ADN
7.
Genome Announc ; 4(5)2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27587827

RESUMEN

We report here a genome sequence for Rhodococcus sp. isolate UM008 isolated from the renal/interrenal tissue of the winter skate Leucoraja ocellata Genome sequence analysis suggests that Rhodococcus bacteria may act in a novel mutualistic relationship with their elasmobranch host, serving as biocatalysts in the steroidogenic pathway of 1α-hydroxycorticosterone.

8.
Appl Environ Microbiol ; 82(23): 6889-6898, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27637885

RESUMEN

Pseudomonas brassicacearum DF41 is a biocontrol agent that suppresses disease caused by the fungal pathogen Sclerotinia sclerotiorum A number of exometabolites are produced by DF41 including the lipopeptide sclerosin, hydrogen cyanide (HCN) and degradative enzymes. Production of these compounds is controlled at both the transcriptional and posttranscriptional level by quorum sensing (QS) and the Gac-two component regulatory system. In order to be successful, a biocontrol agent must persist in the environment at levels sufficient for pathogen control. Bacterivorous predators, including nematodes, represent a challenge to the establishment of introduced microorganisms. In the current study, DF41 was investigated for its ability to resist predation by Caenorhabditis elegans. We discovered that this bacterium is capable of killing C. elegans through two different mechanisms: the first involves exposure to toxic metabolites; and the second entails biofilm formation on the nematode head blocking the buccal cavity. Biofilm formation on nematodes, which has only been reported for Yersinia spp. and Xenorhabdus nematophila, is dependent upon the Gac system. Biofilms were not observed when bacteria were grown on NaCl-containing media, and on C. elegans biofilm-resistant mutants. Co-culturing with nematodes lead to increased expression of the pdfRI-rfiA QS genes and hcnA which is under QS control. HCN was the most nematicidal of the exometabolites, suggesting that this bacterium can respond to predator cues and upregulate expression of toxins accordingly. In summary, DF41 is able to respond to the presence of C. elegans and through two distinct mechanisms it can escape predation. IMPORTANCE: Pseudomonas brassicacearum DF41 can suppress fungal pathogens through a process known as biocontrol. To be successful, a biocontrol agent must be able to persist in the environment at levels sufficient for pathogen control. Predators including the nematode Caenorhabditis elegans represent a threat to persistence. The aim of the current study was to investigate the DF41-C. elegans interaction. We discovered that DF41 is able to escape predation through two distinct mechanisms. The first involves exposure to toxic bacterial metabolites and the second entails formation of a sticky coating on the nematode head, called a biofilm, which blocks feeding and causes starvation. This is the first report of a pseudomonad forming biofilms on the C. elegans surface. When grown with C. elegans, DF41 exhibits altered gene expression and metabolite production indicating that this bacterium can sense the presence of these predators and adjust its physiology accordingly.

9.
Sci Rep ; 6: 23582, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27045738

RESUMEN

The Helicobacter pylori energy sensor TlpD determines tactic behaviour under low energy conditions and is important in vivo. We explored protein-protein interactions of TlpD and their impact on TlpD localisation and function. Pull-down of tagged TlpD identified protein interaction partners of TlpD, which included the chemotaxis histidine kinase CheAY2, the central metabolic enzyme aconitase (AcnB) and the detoxifying enzyme catalase (KatA). We confirmed that KatA and AcnB physically interact with TlpD. While the TlpD-dependent behavioural response appeared not influenced in the interactor mutants katA and acnB in steady-state behavioural assays, acetone carboxylase subunit (acxC) mutant behaviour was altered. TlpD was localised in a bipolar subcellular pattern in media of high energy. We observed a significant change in TlpD localisation towards the cell body in cheAY2-, catalase- or aconitase-deficient bacteria or in bacteria incubated under low energy conditions, including oxidative stress or respiratory inhibition. Inactivation of tlpD resulted in an increased sensitivity to iron limitation and oxidative stress and influenced the H. pylori transcriptome. Oxidative stress, iron limitation and overexpressing the iron-sulfur repair system nifSU altered TlpD-dependent behaviour. We propose that TlpD localisation is instructed by metabolic activity and protein interactions, and its sensory activity is linked to iron-sulfur cluster integrity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Helicobacter pylori/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Aconitato Hidratasa/metabolismo , Proteínas Bacterianas/genética , Catalasa/metabolismo , Quimiotaxis , Helicobacter pylori/genética , Homeostasis , Hierro/química , Proteínas Hierro-Azufre/metabolismo , Espectrometría de Masas , Mutación , Estrés Oxidativo , Consumo de Oxígeno , Mapeo de Interacción de Proteínas , Receptores Citoplasmáticos y Nucleares/genética
10.
Life Sci ; 148: 31-40, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26860891

RESUMEN

AIMS: Catalase catalyzes the degradation of H2O2. Acinetobacter species have four predicted catalase genes, katA, katE, katG, and katX. The aims of the present study seek to determine which catalase(s) plays a predominant role in determining the resistance to H2O2, and to assess the role of catalase in Acinetobacter virulence. MAIN METHODS: Mutants of Acinetobacter baumannii and Acinetobacter nosocomialis with deficiencies in katA, katE, katG, and katX were tested for sensitivity to H2O2, either by halo assays or by liquid culture assays. Respiratory burst of neutrophils, in response to A. nosocomialis, was assessed by chemiluminescence to examine the effects of catalase on the production of reactive oxygen species (ROS) in neutrophils. Bacterial virulence was assessed using a Galleria mellonella larva infection model. KEY FINDINGS: The capacities of A. baumannii and A. nosocomialis to degrade H2O2 are largely dependent on katE. The resistance of both A. baumannii and A. nosocomialis to H2O2 is primarily determined by the katG gene, although katE also plays a minor role in H2O2 resistance. Bacteria lacking both the katG and katE genes exhibit the highest sensitivity to H2O2. While A. nosocomialis bacteria with katE and/or katG were able to decrease ROS production by neutrophils, these cells also induced a more robust respiratory burst in neutrophils than did cells deficient in both katE and katG. We also found that A. nosocomialis deficient in both katE and katG was more virulent than the wildtype A. nosocomialis strain. SIGNIFICANCE: Our findings suggest that inhibition of Acinetobacter catalase may help to overcome the resistance of Acinetobacter species to microbicidal H2O2 and facilitate bacterial disinfection.


Asunto(s)
Acinetobacter/efectos de los fármacos , Catalasa/efectos de los fármacos , Proteínas de Escherichia coli/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Fagocitos/efectos de los fármacos , Estallido Respiratorio/efectos de los fármacos , Acinetobacter/enzimología , Acinetobacter/genética , Animales , Catalasa/genética , Catalasa/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/fisiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ratones , Ratones Endogámicos C3H , Fagocitos/enzimología , Estallido Respiratorio/fisiología
11.
PLoS One ; 10(7): e0133033, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26197050

RESUMEN

Abscisic acid ((+)-ABA) is a phytohormone involved in the modulation of developmental processes and stress responses in plants. A chemical proteomics approach using an ABA mimetic probe was combined with in vitro assays, isothermal titration calorimetry (ITC), x-ray crystallography and in silico modelling to identify putative (+)-ABA binding-proteins in crude extracts of Arabidopsis thaliana. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was identified as a putative ABA-binding protein. Radiolabelled-binding assays yielded a Kd of 47 nM for (+)-ABA binding to spinach Rubisco, which was validated by ITC, and found to be similar to reported and experimentally derived values for the native ribulose-1,5-bisphosphate (RuBP) substrate. Functionally, (+)-ABA caused only weak inhibition of Rubisco catalytic activity (Ki of 2.1 mM), but more potent inhibition of Rubisco activation (Ki of ~ 130 µM). Comparative structural analysis of Rubisco in the presence of (+)-ABA with RuBP in the active site revealed only a putative low occupancy (+)-ABA binding site on the surface of the large subunit at a location distal from the active site. However, subtle distortions in electron density in the binding pocket and in silico docking support the possibility of a higher affinity (+)-ABA binding site in the RuBP binding pocket. Overall we conclude that (+)-ABA interacts with Rubisco. While the low occupancy (+)-ABA binding site and weak non-competitive inhibition of catalysis may not be relevant, the high affinity site may allow ABA to act as a negative effector of Rubisco activation.


Asunto(s)
Ácido Abscísico/metabolismo , Ribulosa-Bifosfato Carboxilasa/química , Ácido Abscísico/química , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Sitios de Unión , Datos de Secuencia Molecular , Unión Proteica , Ribulosa-Bifosfato Carboxilasa/metabolismo
12.
PLoS One ; 10(4): e0123184, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25901993

RESUMEN

Pseudomonas chlororaphis strain PA23 is a biocontrol agent able to suppress growth of the fungal pathogen Sclerotinia sclerotiorum. This bacterium produces an arsenal of exometabolites including pyrrolnitrin (PRN), phenazine (PHZ), hydrogen cyanide (HCN), and degradative enzymes. Production of these compounds is controlled at both the transcriptional and posttranscriptional levels by the Gac-Rsm system, RpoS, PsrA, and the Phz quorum-sensing system. Beyond pathogen-suppression, the success of a biocontrol agent is dependent upon its ability to establish itself in the environment where predation by bacterivorous organisms, including nematodes, may threaten persistence. The focus of this study was to investigate whether PA23 is able to resist grazing by Caenorhabditis elegans and to define the role played by exoproducts in the bacterial-nematode interaction. We discovered that both PRN and HCN contribute to fast- and slow-killing of C. elegans. HCN is well-established as having lethal effects on C. elegans; however, PRN has not been reported to be nematicidal. Exposure of L4 stage nematodes to purified PRN reduced nematode viability in a dose-dependent fashion and led to reduced hatching of eggs laid by gravid adults. Because bacterial metabolites can act as chemoattractants or repellents, we analyzed whether PA23 exhibited attractant or repulsive properties towards C. elegans. Both PRN and HCN were found to be potent repellents. Next we investigated whether the presence of C. elegans would elicit changes in PA23 gene activity. Co-culturing the two organisms increased expression of a number of genes associated with biocontrol, including phzA, hcnA, phzR, phzI, rpoS and gacS. Exoproduct analysis showed that PHZ and autoinducer signals were upregulated, consistent with the gene expression profiles. Collectively, these findings indicate that PA23 is able to sense the presence of C. elegans and it is able to both repel and kill the nematodes, which should facilitate environmental persistence and ultimately biocontrol.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Cianuro de Hidrógeno/metabolismo , Cianuro de Hidrógeno/farmacología , Pseudomonas/metabolismo , Pirrolnitrina/biosíntesis , Pirrolnitrina/farmacología , Animales , Antinematodos/metabolismo , Antinematodos/farmacología , Bioensayo , Caenorhabditis elegans/microbiología , Caenorhabditis elegans/fisiología , Regulación Bacteriana de la Expresión Génica , Oviposición/efectos de los fármacos , Control Biológico de Vectores , Pseudomonas/genética , Pseudomonas/crecimiento & desarrollo
13.
Proteins ; 83(5): 853-66, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25663126

RESUMEN

Heme-containing catalases and catalase-peroxidases catalyze the dismutation of hydrogen peroxide as their predominant catalytic activity, but in addition, individual enzymes support low levels of peroxidase and oxidase activities, produce superoxide, and activate isoniazid as an antitubercular drug. The recent report of a heme enzyme with catalase, peroxidase and penicillin oxidase activities in Bacillus pumilus and its categorization as an unusual catalase-peroxidase led us to investigate the enzyme for comparison with other catalase-peroxidases, catalases, and peroxidases. Characterization revealed a typical homotetrameric catalase with one pentacoordinated heme b per subunit (Tyr340 being the axial ligand), albeit in two orientations, and a very fast catalatic turnover rate (kcat = 339,000 s(-1) ). In addition, the enzyme supported a much slower (kcat = 20 s(-1) ) peroxidatic activity utilizing substrates as diverse as ABTS and polyphenols, but no oxidase activity. Two binding sites, one in the main access channel and the other on the protein surface, accommodating pyrogallol, catechol, resorcinol, guaiacol, hydroquinone, and 2-chlorophenol were identified in crystal structures at 1.65-1.95 Å. A third site, in the heme distal side, accommodating only pyrogallol and catechol, interacting with the heme iron and the catalytic His and Arg residues, was also identified. This site was confirmed in solution by EPR spectroscopy characterization, which also showed that the phenolic oxygen was not directly coordinated to the heme iron (no low-spin conversion of the Fe(III) high-spin EPR signal upon substrate binding). This is the first demonstration of phenolic substrates directly accessing the heme distal side of a catalase.


Asunto(s)
Catalasa/química , Peroxidasa/química , Bacillus/enzimología , Dominio Catalítico , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Hemo/química , Modelos Moleculares , Polifenoles/química , Unión Proteica , Especificidad por Sustrato
14.
Genome Announc ; 2(5)2014 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-25323713

RESUMEN

We report the 4.3-Mbp genome sequence of a blood isolate of Acinetobacter baumannii strain AB030.

15.
Genome Announc ; 2(5)2014 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-25323714

RESUMEN

We report here the 3.8-Mbp genome sequence of a blood isolate of Acinetobacter baumannii strain AB031.

16.
Antimicrob Agents Chemother ; 58(11): 6424-31, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25136007

RESUMEN

In order to determine if triclosan can select for mutants of Acinetobacter baumannii ATCC 17978 that display reduced susceptibilities to antibiotics, we isolated a triclosan-resistant mutant, A. baumannii AB042, by serial passaging of A. baumannii ATCC 17978 in growth medium supplemented with triclosan. The antimicrobial susceptibility of AB042 was analyzed by the 2-fold serial dilution method. Expression of five different resistance-nodulation-division (RND) pump-encoding genes (adeB, adeG, adeJ, A1S_2818, and A1S_3217), two outer membrane porin-encoding genes (carO and oprD), and the MATE family pump-encoding gene abeM was analyzed using quantitative reverse transcriptase (qRT) PCR. A. baumannii AB042 exhibited elevated resistance to multiple antibiotics, including piperacillin-tazobactam, doxycycline, moxifloxacin, ceftriaxone, cefepime, meropenem, doripenem, ertapenem, ciprofloxacin, aztreonam, tigecycline, and trimethoprim-sulfamethoxazole, in addition to triclosan. Genome sequencing of A. baumannii AB042 revealed a (116)G→V mutation in fabI, the gene encoding the target enzyme for triclosan. Expression analysis of efflux pumps showed overexpression of the AdeIJK pump, and sequencing of adeN, the gene that encodes the repressor of the adeIJK operon, revealed a 73-bp deletion which would cause a premature termination of translation, resulting in an inactive truncated AdeN protein. This work shows that triclosan can select for mutants of A. baumannii that display reduced susceptibilities to multiple antibiotics from chemically distinct classes in addition to triclosan resistance. This multidrug resistance can be explained by the overexpression of the AdeIJK efflux pump.


Asunto(s)
Acinetobacter baumannii/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas de Transporte de Membrana/genética , Selección Genética/efectos de los fármacos , Triclosán/farmacología , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/enzimología , Proteínas Bacterianas/biosíntesis , Secuencia de Bases , Farmacorresistencia Bacteriana Múltiple/genética , Enoil-ACP Reductasa (NADH)/genética , Acido Graso Sintasa Tipo II/genética , Inhibidores de la Síntesis de Ácidos Grasos/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genoma Bacteriano/genética , Proteínas de Transporte de Membrana/biosíntesis , Pruebas de Sensibilidad Microbiana , Selección Genética/genética , Análisis de Secuencia de ADN
17.
Genome Announc ; 2(4)2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25035328

RESUMEN

Pseudomonas chlororaphis strain PA23 is a plant-beneficial bacterium that is able to suppress disease caused by the fungal pathogen Sclerotinia sclerotiorum through a process known as biological control. Here we present a 7.1-Mb assembly of the PA23 genome.

18.
Biochemistry ; 53(23): 3781-9, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24901481

RESUMEN

The location of the Trp radical and the catalytic function of the [Fe(IV)═O Trp191(•+)] intermediate in cytochrome c peroxidase (CcP) are well-established; however, the unambiguous identification of the site(s) for the formation of tyrosyl radical(s) and their possible biological roles remain elusive. We have now performed a systematic investigation of the location and reactivity of the Tyr radical(s) using multifrequency Electron Paramagnetic Resonance (EPR) spectroscopy combined with multiple-site Trp/Tyr mutations in CcP. Two tyrosines, Tyr71 and Tyr236, were identified as those contributing primarily to the EPR spectrum of the tyrosyl radical, recorded at 9 and 285 GHz. The EPR characterization also showed that the heme distal-side Trp51 is involved in the intramolecular electron transfer between Tyr71 and the heme and that formation of Tyr71(•) and Tyr236(•) is independent of the [Fe(IV)═O Trp191(•+)] intermediate. Tyr71 is located in an optimal position to mediate the oxidation of substrates binding at a site, more than 20 Šfrom the heme, which has been reported recently in the crystal structures of CcP with bound guaicol and phenol [Murphy, E. J., et al. (2012) FEBS J. 279, 1632-1639]. The possibility of discriminating the radical intermediates by their EPR spectra allowed us to identify Tyr71(•) as the reactive species with the guaiacol substrate. Our assignment of the surface-exposed Tyr236 as the other radical site agrees well with previous studies based on MNP labeling and protein cross-linking [Tsaprailis, G., and English, A. M. (2003) JBIC, J. Biol. Inorg. Chem. 8, 248-255] and on its covalent modification upon reaction of W191G CcP with 2-aminotriazole [Musah, R. A., and Goodin, D. B. (1997) Biochemistry 36, 11665-11674]. Accordingly, while Tyr71 acts as a true reactive intermediate for the oxidation of certain small substrates that bind at a site remote from the heme, the surface-exposed Tyr236 would be more likely related to oxidative stress signaling, as previously proposed. Our findings reinforce the view that CcP is the monofunctional peroxidase that most closely resembles its ancestor enzymes, the catalase-peroxidases, in terms of the higher complexity of the peroxidase reaction [Colin, J., et al. (2009) J. Am. Chem. Soc. 131, 8557-8563]. The strategy used to identify the elusive Tyr radical sites in CcP may be applied to other heme enzymes containing a large number of Tyr and Trp residues and for which Tyr (or Trp) radicals have been proposed to be involved in their peroxidase or peroxidase-like reaction.


Asunto(s)
Citocromo-c Peroxidasa/metabolismo , Expectorantes/metabolismo , Guayacol/metabolismo , Hemo/metabolismo , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/metabolismo , Tirosina/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , Biocatálisis , Citocromo-c Peroxidasa/química , Citocromo-c Peroxidasa/genética , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Expectorantes/química , Guayacol/química , Hemo/química , Cinética , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxidación-Reducción , Conformación Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Propiedades de Superficie , Triptófano/química , Triptófano/metabolismo , Tirosina/química
19.
Genome Announc ; 2(3)2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24812222

RESUMEN

Pseudomonas brassicacearum DF41, a Gram-negative soil bacterium, is able to suppress the fungal pathogen Sclerotinia sclerotiorum through a process known as biological control. Here, we present a 6.8-Mb assembly of its genome, which is the second fully assembled genome of a P. brassicacearum strain.

20.
J Am Chem Soc ; 136(20): 7249-52, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24785434

RESUMEN

Catalase peroxidases (KatG's) are bifunctional heme proteins that can disproportionate hydrogen peroxide (catalatic reaction) despite their structural dissimilarity with monofunctional catalases. Using X-ray crystallography and QM/MM calculations, we demonstrate that the catalatic reaction of KatG's involves deprotonation of the active-site Trp, which plays a role similar to that of the distal His in monofunctional catalases. The interaction of a nearby mobile arginine with the distal Met-Tyr-Trp essential adduct (in/out) acts as an electronic switch, triggering deprotonation of the adduct Trp.


Asunto(s)
Catalasa/metabolismo , Peroxidasas/metabolismo , Triptófano/metabolismo , Catalasa/química , Dominio Catalítico , Cristalografía por Rayos X , Activación Enzimática , Concentración de Iones de Hidrógeno , Modelos Moleculares , Peroxidasas/química , Teoría Cuántica , Triptófano/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...