Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
STAR Protoc ; 5(2): 102988, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38635395

RESUMEN

Respirometry is a technique for studying mitochondrial function that has proven compatibility with ≥0.5 mg of brain tissue. Here, we present a protocol for assessing oxygen consumption and H2O2 production rates in hippocampal tissue using the Oroboros O2k system. We describe steps for brain harvesting, tissue preparation, hippocampal microdissection, and respirometry assays. This approach has been valuable to study the metabolism of dentate granule cells of the hippocampus and could be applicable to other brain subregions. For complete details on the use and execution of this protocol, please refer to Rose et al.1.


Asunto(s)
Fluorometría , Hipocampo , Mitocondrias , Consumo de Oxígeno , Animales , Hipocampo/metabolismo , Hipocampo/citología , Ratones , Fluorometría/métodos , Consumo de Oxígeno/fisiología , Mitocondrias/metabolismo , Peróxido de Hidrógeno/metabolismo
2.
Geroscience ; 46(2): 2739-2754, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38159133

RESUMEN

Aging has a significant impact on the immune system, leading to a gradual decline in immune function and changes in the body's ability to respond to bacterial infections. Non-tuberculous mycobacteria (NTM), also known as atypical mycobacteria or environmental mycobacteria, are commonly found in soil, water, and various environmental sources. While many NTM species are considered opportunistic pathogens, some can cause significant infections, particularly in individuals with compromised immune systems, such as older individuals. When mycobacteria enter the body, macrophages are among the first immune cells to encounter them and attempt to engulf mycobacteria through a process called phagocytosis. Some NTM species, including Mycobacterium avium (M. avium) can survive and replicate within macrophages. However, little is known about the interaction between NTM and macrophages in older individuals. In this study, we investigated the response of bone marrow-derived macrophage (BMMs) isolated from young (5 months) and old (25 months) mice to M. avium serotype 4, one of the main NTM species in patients with pulmonary NTM diseases. Our results demonstrated that BMMs from old mice have an increased level of intracellular iron and are more susceptible to M. avium serotype 4 infection compared to BMMs from young mice. The whole-cell proteomic analysis indicated a dysregulated expression of iron homeostasis-associated proteins in old BMMs regardless of mycobacterial infection. Deferoxamine, an iron chelator, significantly rescued mycobacterial killing and phagolysosome maturation in BMMs from old mice. Therefore, our data for the first time indicate that an intracellular iron accumulation improves NTM survival within macrophages from old mice and suggest a potential application of iron-chelating drugs as a host-directed therapy for pulmonary NTM infection in older individuals.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Proteómica , Humanos , Animales , Ratones , Anciano , Infecciones por Mycobacterium no Tuberculosas/microbiología , Micobacterias no Tuberculosas/fisiología , Macrófagos , Fagocitosis
3.
J Neurochem ; 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37415312

RESUMEN

The mitochondrial calcium uniporter (MCU) is the main route of calcium (Ca2+ ) entry into neuronal mitochondria. This channel has been linked to mitochondrial Ca2+ overload and cell death under neurotoxic conditions, but its physiologic roles for normal brain function remain poorly understood. Despite high expression of MCU in excitatory hippocampal neurons, it is unknown whether this channel is required for learning and memory. Here, we genetically down-regulated the Mcu gene in dentate granule cells (DGCs) of the hippocampus and found that this manipulation increases the overall respiratory activity of mitochondrial complexes I and II, augmenting the generation of reactive oxygen species in the context of impaired electron transport chain. The metabolic remodeling of MCU-deficient neurons also involved changes in the expression of enzymes that participate in glycolysis and the regulation of the tricarboxylic acid cycle, as well as the cellular antioxidant defenses. We found that MCU deficiency in DGCs does not change circadian rhythms, spontaneous exploratory behavior, or cognitive function in middle-aged mice (11-13 months old), when assessed with a food-motivated working memory test with three choices. DGC-targeted down-regulation of MCU significantly impairs reversal learning assessed with an 8-arm radial arm water maze but does not affect their ability to learn the task for the first time. Our results indicate that neuronal MCU plays an important physiologic role in memory formation and may be a potential therapeutic target to develop interventions aimed at improving cognitive function in aging, neurodegenerative diseases, and brain injury.

4.
Sci Rep ; 13(1): 9841, 2023 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-37330610

RESUMEN

Metabolic dysfunction underlies several chronic diseases. Dietary interventions can reverse metabolic declines and slow aging but remaining compliant is difficult. 17α-estradiol (17α-E2) treatment improves metabolic parameters and slows aging in male mice without inducing significant feminization. We recently reported that estrogen receptor α is required for the majority of 17α-E2-mediated benefits in male mice, but that 17α-E2 also attenuates fibrogenesis in liver, which is regulated by estrogen receptor ß (ERß)-expressing hepatic stellate cells (HSC). The current studies sought to determine if 17α-E2-mediated benefits on systemic and hepatic metabolism are ERß-dependent. We found that 17α-E2 treatment reversed obesity and related systemic metabolic sequela in both male and female mice, but this was partially blocked in female, but not male, ERßKO mice. ERß ablation in male mice attenuated 17α-E2-mediated benefits on hepatic stearoyl-coenyzme A desaturase 1 (SCD1) and transforming growth factor ß1 (TGF-ß1) production, which play critical roles in HSC activation and liver fibrosis. We also found that 17α-E2 treatment suppresses SCD1 production in cultured hepatocytes and hepatic stellate cells, indicating that 17α-E2 directly signals in both cell-types to suppress drivers of steatosis and fibrosis. We conclude that ERß partially controls 17α-E2-mediated benefits on systemic metabolic regulation in female, but not male, mice, and that 17α-E2 likely signals through ERß in HSCs to attenuate pro-fibrotic mechanisms.


Asunto(s)
Estradiol , Receptor beta de Estrógeno , Ratones , Femenino , Animales , Estradiol/farmacología , Estradiol/metabolismo , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Hepatocitos/metabolismo , Cirrosis Hepática/patología , Células Estrelladas Hepáticas/metabolismo , Fibrosis
5.
Front Immunol ; 14: 1146690, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37143648

RESUMEN

Background: Neuro-cognitive impairment is a deleterious complication of bacterial infections that is difficult to treat or prevent. Listeria monocytogenes (Lm) is a neuroinvasive bacterial pathogen and commonly used model organism for studying immune responses to infection. Antibiotic-treated mice that survive systemic Lm infection have increased numbers of CD8+ and CD4+ T-lymphocytes in the brain that include tissue resident memory (TRM) T cells, but post-infectious cognitive decline has not been demonstrated. We hypothesized that Lm infection would trigger cognitive decline in accord with increased numbers of recruited leukocytes. Methods: Male C57BL/6J mice (age 8 wks) were injected with neuroinvasive Lm 10403s, non-neuroinvasive Δhly mutants, or sterile saline. All mice received antibiotics 2-16d post-injection (p.i.) and underwent cognitive testing 1 month (mo) or 4 mo p.i. using the Noldus PhenoTyper with Cognition Wall, a food reward-based discrimination procedure using automated home cage based observation and monitoring. After cognitive testing, brain leukocytes were quantified by flow cytometry. Results: Changes suggesting cognitive decline were observed 1 mo p.i. in both groups of infected mice compared with uninfected controls, but were more widespread and significantly worse 4 mo p.i. and most notably after Lm 10403s. Impairments were observed in learning, extinction of prior learning and distance moved. Infection with Lm 10403s, but not Δhly Lm, significantly increased numbers of CD8+ and CD4+ T-lymphocytes, including populations expressing CD69 and TRM cells, 1 mo p.i. Numbers of CD8+, CD69+CD8+ T-lymphocytes and CD8+ TRM remained elevated at 4 mo p.i. but numbers of CD4+ cells returned to homeostatic levels. Higher numbers of brain CD8+ T-lymphocytes showed the strongest correlations with reduced cognitive performance. Conclusions: Systemic infection by neuroinvasive as well as non-neuroinvasive Lm triggers a progressive decline in cognitive impairment. Notably, the deficits are more profound after neuroinvasive infection that triggers long-term retention of CD8+ T-lymphocytes in the brain, than after non-neuroinvasive infection, which does not lead to retained cells in the brain. These results support the conclusion that systemic infections, particularly those that lead to brain leukocytosis trigger a progressive decline in cognitive function and implicate CD8+ T-lymphocytes, including CD8+TRM in the etiology of this impairment.


Asunto(s)
Disfunción Cognitiva , Listeria monocytogenes , Listeriosis , Ratones , Masculino , Animales , Linfocitos T CD8-positivos , Ratones Endogámicos C57BL , Disfunción Cognitiva/etiología
6.
PNAS Nexus ; 2(4): pgad101, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37091543

RESUMEN

The greatest risk factor for cognitive decline is aging. The biological mechanisms for this decline remain enigmatic due, in part, to the confounding of normal aging mechanisms and those that contribute to cognitive impairment. Importantly, many individuals exhibit impaired cognition in age, while some retain functionality despite their age. Here, we establish a behavioral testing paradigm to characterize age-related cognitive heterogeneity in inbred aged C57BL/6 mice and reliably separate animals into cognitively "intact" (resilient) and "impaired" subgroups using a high-resolution home-cage testing paradigm for spatial discrimination. RNA sequencing and subsequent pathway analyses of cognitively stratified mice revealed molecular signatures unique to cognitively impaired animals, including transcriptional down-regulation of genes involved in mitochondrial oxidative phosphorylation (OXPHOS) and sirtuin (Sirt1 and Sirt3) expression in the hippocampus. Mitochondrial function assessed using high-resolution respirometry indicated a reduced OXPHOS coupling efficiency in cognitively impaired animals with subsequent hippocampal analyses revealing an increase in the oxidative damage marker (3-nitrotyrosine) and an up-regulation of antioxidant enzymes (Sod2, Sod1, Prdx6, etc.). Aged-impaired animals also showed increased levels of IL-6 and TNF-α gene expression in the hippocampus and increased serum levels of proinflammatory cytokines, including IL-6. These results provide critical insight into the diversity of brain aging in inbred animals and reveal the unique mechanisms that separate cognitive resilience from cognitive impairment. Our data indicate the importance of cognitive stratification of aging animals to delineate the mechanisms underlying cognitive impairment and test the efficacy of therapeutic interventions.

7.
bioRxiv ; 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36993459

RESUMEN

Metabolic dysfunction underlies several chronic diseases. Dietary interventions can reverse metabolic declines and slow aging but remaining compliant is difficult. 17α-estradiol (17α-E2) treatment improves metabolic parameters and slows aging in male mice without inducing significant feminization. We recently reported that estrogen receptor α is required for the majority of 17α-E2-mediated benefits in male mice, but that 17α-E2 also attenuates fibrogenesis in liver, which is regulated by estrogen receptor ß (ERß)-expressing hepatic stellate cells (HSC). The current studies sought to determine if 17α-E2-mediated benefits on systemic and hepatic metabolism are ERß-dependent. We found that 17α-E2 treatment reversed obesity and related systemic metabolic sequela in both male and female mice, but this was partially blocked in female, but not male, ERßKO mice. ERß ablation in male mice attenuated 17α-E2-mediated benefits on hepatic stearoyl-coenyzme A desaturase 1 (SCD1) and transforming growth factor ß1 (TGF-ß1) production, which play critical roles in HSC activation and liver fibrosis. We also found that 17α-E2 treatment suppresses SCD1 production in cultured hepatocytes and hepatic stellate cells, indicating that 17α-E2 directly signals in both cell-types to suppress drivers of steatosis and fibrosis. We conclude that ERß partially controls 17α-E2-mediated benefits on systemic metabolic regulation in female, but not male, mice, and that 17α-E2 likely signals through ERß in HSCs to attenuate pro-fibrotic mechanisms.

8.
J Gerontol A Biol Sci Med Sci ; 78(5): 771-779, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-36762848

RESUMEN

We generated a genetically heterogenous rat model by a 4-way cross strategy using 4 inbred strains (Brown Norway [BN], Fischer 344 [F344], Lewis [LEW], and Wistar Kyoto [KY]) to provide investigators with a highly genetically diverse rat model from commercially available inbred rats. We made reciprocal crosses between males and females from the 2 F1 hybrids to generate genetically heterogeneous rats with mitochondrial genomes from either the BN (OKC-HETB, a.k.a "B" genotype) or WKY (OKC-HETW a.k.a "W" genotype) parental strains. These two mitochondrial genomes differ at 94 nucleotides, more akin to human mitochondrial genome diversity than that available in classical laboratory mouse strains. Body weights of the B and W genotypes were similar. However, mitochondrial genotype antagonistically affected grip strength and treadmill endurance in females only. In addition, mitochondrial genotype significantly affected multiple responses to a high-fat diet (HFD) and treatment with 17α-estradiol. Contrary to findings in mice in which males only are affected by 17α-estradiol supplementation, female rats fed a HFD beneficially responded to 17α-estradiol treatment as evidenced by declines in body mass, adiposity, and liver mass. Male rats, by contrast, differed in a mitochondrial genotype-specific manner, with only B males responding to 17α-estradiol treatment. Mitochondrial genotype and sex differences were also observed in features of brain-specific antioxidant response to a HFD and 17α-estradiol as shown by hippocampal levels of Sod2 acetylation, JNK, and FoxO3a. These results emphasize the importance of mitochondrial genotype in assessing responses to putative interventions in aging processes.


Asunto(s)
Genoma Mitocondrial , Humanos , Ratas , Femenino , Masculino , Animales , Ratones , Ratas Endogámicas F344 , Ratas Endogámicas WKY , Ratas Endogámicas Lew , Ratas Endogámicas , Estradiol
9.
J Neurosci ; 42(31): 5992-6006, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35760531

RESUMEN

Cognitive decline is a debilitating aspect of aging and neurodegenerative diseases such as Alzheimer's disease are closely associated with mitochondrial dysfunction, increased reactive oxygen species, neuroinflammation, and astrogliosis. This study investigated the effects of decreased mitochondrial antioxidant response specifically in astrocytes on cognitive performance and neuronal function in C57BL/6J mice using a tamoxifen-inducible astrocyte-specific knockout of manganese superoxide dismutase (aSOD2-KO), a mitochondrial matrix antioxidant that detoxifies superoxide generated during mitochondrial respiration. We reduced astrocyte SOD2 levels in male and female mice at 11-12 months of age and tested in an automated home cage (PhenoTyper) apparatus for diurnal patterns, spatial learning, and memory function at 15 months of age. aSOD2-KO impaired hippocampal-dependent spatial working memory and decreased cognitive flexibility in the reversal phase of the testing paradigm in males. Female aSOD2-KO showed no learning and memory deficits compared with age-matched controls despite significant reduction in hippocampal SOD2 expression. aSOD2-KO males further showed decreased hippocampal long-term potentiation, but paired-pulse facilitation was unaffected. Levels of d-serine, an NMDA receptor coagonist, were also reduced in aSOD2-KO mice, but female knockouts showed a compensatory increase in serine racemase expression. Furthermore, aSOD2-KO mice demonstrated increased density of astrocytes, indicative of astrogliosis, in the hippocampus compared with age-matched controls. These data demonstrate that reduction in mitochondrial antioxidant stress response in astrocytes recapitulates age-related deficits in cognitive function, d-serine availability, and astrogliosis. Therefore, improving astrocyte mitochondrial homeostasis may provide a therapeutic target for intervention for cognitive impairment in aging.SIGNIFICANCE STATEMENT Diminished antioxidant response is associated with increased astrogliosis in aging and in Alzheimer's disease. Manganese superoxide dismutase (SOD2) is an antioxidant in the mitochondrial matrix that detoxifies superoxide and maintains mitochondrial homeostasis. We show that astrocytic ablation of SOD2 impairs hippocampal-dependent plasticity in spatial working memory, reduces long-term potentiation of hippocampal neurons and levels of the neuromodulator d-serine, and increases astrogliosis, consistent with defects in advanced aging and Alzheimer's disease. Our data provide strong evidence for sex-specific effects of astrocytic SOD2 functions in age-related cognitive dysfunction.


Asunto(s)
Enfermedad de Alzheimer , Astrocitos , Superóxido Dismutasa , Enfermedad de Alzheimer/metabolismo , Animales , Antioxidantes/metabolismo , Astrocitos/metabolismo , Cognición/fisiología , Femenino , Gliosis/metabolismo , Hipocampo/metabolismo , Masculino , Memoria a Corto Plazo , Ratones , Ratones Endogámicos C57BL , Serina/metabolismo , Factores Sexuales , Superóxido Dismutasa/genética , Superóxidos/metabolismo
10.
Front Behav Neurosci ; 15: 735387, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630052

RESUMEN

The reproducibility crisis (or replication crisis) in biomedical research is a particularly existential and under-addressed issue in the field of behavioral neuroscience, where, in spite of efforts to standardize testing and assay protocols, several known and unknown sources of confounding environmental factors add to variance. Human interference is a major contributor to variability both within and across laboratories, as well as novelty-induced anxiety. Attempts to reduce human interference and to measure more "natural" behaviors in subjects has led to the development of automated home-cage monitoring systems. These systems enable prolonged and longitudinal recordings, and provide large continuous measures of spontaneous behavior that can be analyzed across multiple time scales. In this review, a diverse team of neuroscientists and product developers share their experiences using such an automated monitoring system that combines Noldus PhenoTyper® home-cages and the video-based tracking software, EthoVision® XT, to extract digital biomarkers of motor, emotional, social and cognitive behavior. After presenting our working definition of a "home-cage", we compare home-cage testing with more conventional out-of-cage tests (e.g., the open field) and outline the various advantages of the former, including opportunities for within-subject analyses and assessments of circadian and ultradian activity. Next, we address technical issues pertaining to the acquisition of behavioral data, such as the fine-tuning of the tracking software and the potential for integration with biotelemetry and optogenetics. Finally, we provide guidance on which behavioral measures to emphasize, how to filter, segment, and analyze behavior, and how to use analysis scripts. We summarize how the PhenoTyper has applications to study neuropharmacology as well as animal models of neurodegenerative and neuropsychiatric illness. Looking forward, we examine current challenges and the impact of new developments. Examples include the automated recognition of specific behaviors, unambiguous tracking of individuals in a social context, the development of more animal-centered measures of behavior and ways of dealing with large datasets. Together, we advocate that by embracing standardized home-cage monitoring platforms like the PhenoTyper, we are poised to directly assess issues pertaining to reproducibility, and more importantly, measure features of rodent behavior under more ethologically relevant scenarios.

11.
Geroscience ; 43(2): 901-911, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33674953

RESUMEN

Aging is associated with a significant deficiency in circulating insulin-like growth factor-1 (IGF-1), which has an important role in the pathogenesis of age-related vascular cognitive impairment (VCI). Impairment of moment-to-moment adjustment of regional cerebral blood flow via neurovascular coupling (NVC) importantly contributes to VCI. Previous studies established a causal link between circulating IGF-1 deficiency and neurovascular dysfunction. Release of vasodilator mediators from activated astrocytes plays a key role in NVC. To determine the impact of impaired IGF-1 signaling on astrocytic function, astrocyte-mediated NVC responses were studied in a novel mouse model of astrocyte-specific knockout of IGF1R (GFAP-CreERT2/Igf1rf/f) and accelerated neurovascular aging. We found that mice with disrupted astrocytic IGF1R signaling exhibit impaired NVC responses, decreased stimulated release of the vasodilator gliotransmitter epoxy-eicosatrienoic acids (EETs), and upregulation of soluble epoxy hydrolase (sEH), which metabolizes and inactivates EETs. Collectively, our findings provide additional evidence that IGF-1 promotes astrocyte health and maintains normal NVC, protecting cognitive health.


Asunto(s)
Acoplamiento Neurovascular , Envejecimiento , Animales , Astrocitos , Encéfalo , Circulación Cerebrovascular , Ratones
12.
J Lipid Res ; 61(10): 1308-1319, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32669383

RESUMEN

Cognitive decline with age is a harmful process that can reduce quality of life. Multiple factors have been established to contribute to cognitive decline, but the overall etiology remains unknown. Here, we hypothesized that cognitive dysfunction is mediated, in part, by increased levels of inflammatory cytokines that alter allopregnanolone (AlloP) levels, an important neurosteroid in the brain. We assessed the levels and regulation of AlloP and the effects of AlloP supplementation on cognitive function in 4-month-old and 24-month-old male C57BL/6 mice. With age, the expression of enzymes involved in the AlloP synthetic pathway was decreased and corticosterone (CORT) synthesis increased. Supplementation of AlloP improved cognitive function. Interestingly, interleukin 6 (IL-6) infusion in young animals significantly reduced the production of AlloP compared with controls. It is notable that inhibition of IL-6 with its natural inhibitor, soluble membrane glycoprotein 130, significantly improved spatial memory in aged mice. These findings were supported by in vitro experiments in primary murine astrocyte cultures, indicating that IL-6 decreases production of AlloP and increases CORT levels. Our results indicate that age-related increases in IL-6 levels reduce progesterone substrate availability, resulting in a decline in AlloP levels and an increase in CORT. Furthermore, our results indicate that AlloP is a critical link between inflammatory cytokines and the age-related decline in cognitive function.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/metabolismo , Cognición , Interleucina-6/metabolismo , Pregnanolona/biosíntesis , Envejecimiento/metabolismo , Animales , Encéfalo/fisiología , Masculino , Ratones
13.
J Gerontol A Biol Sci Med Sci ; 75(9): 1624-1632, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-30649208

RESUMEN

Cognitive impairment in the aging population is quickly becoming a health care priority, for which currently no disease-modifying treatment is available. Multiple domains of cognition decline with age even in the absence of neurodegenerative diseases. The cellular and molecular changes leading to cognitive decline with age remain elusive. Synaptobrevin-2 (Syb2), the major vesicular SNAP receptor protein, highly expressed in the cerebral cortex and hippocampus, is essential for synaptic transmission. We have analyzed Syb2 protein levels in mice and found a decrease with age. To investigate the functional consequences of lower Syb2 expression, we have used adult Syb2 heterozygous mice (Syb2+/-) with reduced Syb2 levels. This allowed us to mimic the age-related decrease of Syb2 in the brain in order to selectively test its effects on learning and memory. Our results show that Syb2+/- animals have impaired learning and memory skills and they perform worse with age in the radial arm water maze assay. Syb2+/- hippocampal neurons have reduced synaptic plasticity with reduced release probability and impaired long-term potentiation in the CA1 region. Syb2+/- neurons also have lower vesicular release rates when compared to WT controls. These results indicate that reduced Syb2 expression with age is sufficient to cause cognitive impairment.


Asunto(s)
Envejecimiento Cognitivo/fisiología , Trastornos de la Memoria/sangre , Plasticidad Neuronal/fisiología , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Animales , Western Blotting , Encéfalo/metabolismo , Encéfalo/fisiopatología , Heterocigoto , Hipocampo/metabolismo , Hipocampo/fisiopatología , Aprendizaje por Laberinto , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Noqueados , Proteína 2 de Membrana Asociada a Vesículas/análisis
14.
Mol Neurobiol ; 57(3): 1317-1331, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31732912

RESUMEN

Age-related decline in circulating levels of insulin-like growth factor (IGF)-1 is associated with reduced cognitive function, neuronal aging, and neurodegeneration. Decreased mitochondrial function along with increased reactive oxygen species (ROS) and accumulation of damaged macromolecules are hallmarks of cellular aging. Based on numerous studies indicating pleiotropic effects of IGF-1 during aging, we compared the central and peripheral effects of circulating IGF-1 deficiency on tissue mitochondrial function using an inducible liver IGF-1 knockout (LID). Circulating levels of IGF-1 (~ 75%) were depleted in adult male Igf1f/f mice via AAV-mediated knockdown of hepatic IGF-1 at 5 months of age. Cognitive function was evaluated at 18 months using the radial arm water maze and glucose and insulin tolerance assessed. Mitochondrial function was analyzed in hippocampus, muscle, and visceral fat tissues using high-resolution respirometry O2K as well as redox status and oxidative stress in the cortex. Peripherally, IGF-1 deficiency did not significantly impact muscle mass or mitochondrial function. Aged LID mice were insulin resistant and exhibited ~ 60% less adipose tissue but increased fat mitochondrial respiration (20%). The effects on fat metabolism were attributed to increases in growth hormone. Centrally, IGF-1 deficiency impaired hippocampal-dependent spatial acquisition as well as reversal learning in male mice. Hippocampal mitochondrial OXPHOS coupling efficiency and cortex ATP levels (~ 50%) were decreased and hippocampal oxidative stress (protein carbonylation and F2-isoprostanes) was increased. These data suggest that IGF-1 is critical for regulating mitochondrial function, redox status, and spatial learning in the central nervous system but has limited impact on peripheral (liver and muscle) metabolism with age. Therefore, IGF-1 deficiency with age may increase sensitivity to damage in the brain and propensity for cognitive deficits. Targeting mitochondrial function in the brain may be an avenue for therapy of age-related impairment of cognitive function. Regulation of mitochondrial function and redox status by IGF-1 is essential to maintain brain function and coordinate hippocampal-dependent spatial learning. While a decline in IGF-1 in the periphery may be beneficial to avert cancer progression, diminished central IGF-1 signaling may mediate, in part, age-related cognitive dysfunction and cognitive pathologies potentially by decreasing mitochondrial function.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Factor I del Crecimiento Similar a la Insulina/deficiencia , Mitocondrias/metabolismo , Animales , Cognición/fisiología , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/genética , Neuronas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
15.
Geroscience ; 41(5): 591-607, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31641924

RESUMEN

Mice deficient in the antioxidant enzyme Cu/Zn-superoxide dismutase (Sod1KO mice) have a significant reduction in lifespan, exhibit many phenotypes of accelerated aging, and have high levels of oxidative stress in various tissues. Age-associated cognitive decline is a hallmark of aging and the increase in oxidative stress/damage with age is one of the mechanisms proposed for cognitive decline with age. Therefore, the goal of this study was to determine if Sod1KO mice exhibit an accelerated loss in cognitive function similar to that observed in aged animals. Cognition was assessed in Sod1KO and wild type (WT) mice using an automated home-cage testing apparatus (Noldus PhenoTyper) that included an initial discrimination and reversal task. Comparison of the total distance moved by the mice during light and dark phases of the study demonstrated that the Sod1KO mice do not show a deficit in movement. Assessment of cognitive function showed no significant difference between Sod1KO and WT mice during the initial discrimination phase of learning. However, during the reversal task, Sod1KO mice showed a significantly greater number of incorrect entries compared to WT mice indicating a decline in cognition similar to that observed in aged animals. Markers of oxidative stress (4-Hydroxynonenal, 4-HNE) and neuroinflammation [proinflammatory cytokines (IL6 and IL-1ß) and neuroinflammatory markers (CD68, TLR4, and MCP1)] were significantly elevated in the hippocampus of male and female Sod1KO compared to WT mice. This study provides important evidence that increases in oxidative stress alone are sufficient to induce neuroinflammation and cognitive dysfunction that parallels the memory deficits seen in advanced aging and neurodegenerative diseases.


Asunto(s)
Envejecimiento/fisiología , Disfunción Cognitiva/fisiopatología , Estrés Oxidativo/fisiología , Aldehídos/metabolismo , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Biomarcadores/metabolismo , Quimiocina CCL2/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Ratones Noqueados , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Receptor Toll-Like 4/metabolismo
16.
Geroscience ; 41(2): 109-123, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31041658

RESUMEN

Brain-derived neurotrophic factor (BDNF) has a central role in maintaining and strengthening neuronal connections and to stimulate neurogenesis in the adult brain. Decreased levels of BDNF in the aging brain are thought to usher cognitive impairment. BDNF is stored in dense core vesicles and released through exocytosis from the neurites. The exact mechanism for the regulation of BDNF secretion is not well understood. Munc18-1 (STXBP1) was found to be essential for the exocytosis of synaptic vesicles, but its involvement in BDNF secretion is not known. Interestingly, neurons lacking munc18-1 undergo severe degeneration in knock-out mice. Here, we report the effects of BDNF treatment on the presynaptic terminal using munc18-1-deficient neurons. Reduced expression of munc18-1 in heterozygous (+/-) neurons diminishes synaptic transmitter release, as tested here on individual synaptic connections with FM1-43 fluorescence imaging. Transduction of cultured neurons with BDNF markedly increased BDNF secretion in wild-type but was less effective in munc18-1 +/- cells. In turn, BDNF enhanced synaptic functions and restored the severe synaptic dysfunction induced by munc18-1 deficiency. The role of munc18-1 in the synaptic effect of BDNF is highlighted by the finding that BDNF upregulated the expression of munc18-1 in neurons, consistent with enhanced synaptic functions. Accordingly, this is the first evidence showing the functional effect of BDNF in munc18-1 deficient synapses and about the direct role of munc18-1 in the regulation of BDNF secretion. We propose a molecular model of BDNF secretion and discuss its potential as therapeutic target to prevent cognitive decline in the elderly.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Disfunción Cognitiva/metabolismo , Proteínas Munc18/metabolismo , Proteínas SNARE/metabolismo , Envejecimiento/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Disfunción Cognitiva/fisiopatología , Humanos , Ratones , Ratones Noqueados , Unión Proteica , Sensibilidad y Especificidad , Transmisión Sináptica/efectos de los fármacos , Vesículas Sinápticas
17.
Geroscience ; 40(2): 123-137, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29687240

RESUMEN

Cognitive function declines substantially with age in both humans and animal models. In humans, this decline is associated with decreases in independence and quality of life. Although the methodology for analysis of cognitive function in human models is relatively well established, similar analyses in animal models have many technical issues (e.g., unintended experimenter bias, motivational issues, stress, and testing during the light phase of the light dark cycle) that limit interpretation of the results. These caveats, and others, potentially bias the interpretation of studies in rodents and prevent the application of current tests of learning and memory as part of an overall healthspan assessment in rodent models of aging. The goal of this study was to establish the methodology to assess cognitive function in aging animals that addresses many of these concerns. Here, we use a food reward-based discrimination procedure with minimal stress in C57Bl/6J male mice at 6, 21, and 27 months of age, followed by a reversal task to assess behavioral flexibility. Importantly, the procedures minimize issues related to between-experimenter confounds and are conducted during both the dark and light phases of the light dark cycle in a home-cage setting. During cognitive testing, we were able to assess multiple measures of spontaneous movement and diurnal activity in young and aged mice including, distance moved, velocity, and acceleration over a 90-h period. Both initial discrimination and reversal learning significantly decreased with age and, similar to rats and humans, not all old mice demonstrated impairments in learning with age. These results permitted classification of animals based on their cognitive status. Analysis of movement parameters indicated decreases in distance moved as well as velocity and acceleration with increasing age. Based on these data, we developed preliminary models indicating, as in humans, a close relationship exists between age-related movement parameters and cognitive ability. Our results provide a reliable method for assessing cognitive performance with minimal stress and simultaneously provide key information on movement and diurnal activity. These methods represent a novel approach to developing non-invasive healthspan measures in rodent models that allow standardization across laboratories.


Asunto(s)
Envejecimiento/fisiología , Conducta Animal/fisiología , Ritmo Circadiano/fisiología , Cognición/fisiología , Actividad Motora/fisiología , Envejecimiento/psicología , Animales , Intervalos de Confianza , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Oportunidad Relativa , Aprendizaje Inverso , Memoria Espacial/fisiología
18.
Mol Metab ; 9: 141-155, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29398615

RESUMEN

OBJECTIVE: A decline in mitochondrial function and biogenesis as well as increased reactive oxygen species (ROS) are important determinants of aging. With advancing age, there is a concomitant reduction in circulating levels of insulin-like growth factor-1 (IGF-1) that is closely associated with neuronal aging and neurodegeneration. In this study, we investigated the effect of the decline in IGF-1 signaling with age on astrocyte mitochondrial metabolism and astrocyte function and its association with learning and memory. METHODS: Learning and memory was assessed using the radial arm water maze in young and old mice as well as tamoxifen-inducible astrocyte-specific knockout of IGFR (GFAP-CreTAM/igfrf/f). The impact of IGF-1 signaling on mitochondrial function was evaluated using primary astrocyte cultures from igfrf/f mice using AAV-Cre mediated knockdown using Oroboros respirometry and Seahorse assays. RESULTS: Our results indicate that a reduction in IGF-1 receptor (IGFR) expression with age is associated with decline in hippocampal-dependent learning and increased gliosis. Astrocyte-specific knockout of IGFR also induced impairments in working memory. Using primary astrocyte cultures, we show that reducing IGF-1 signaling via a 30-50% reduction IGFR expression, comparable to the physiological changes in IGF-1 that occur with age, significantly impaired ATP synthesis. IGFR deficient astrocytes also displayed altered mitochondrial structure and function and increased mitochondrial ROS production associated with the induction of an antioxidant response. However, IGFR deficient astrocytes were more sensitive to H2O2-induced cytotoxicity. Moreover, IGFR deficient astrocytes also showed significantly impaired glucose and Aß uptake, both critical functions of astrocytes in the brain. CONCLUSIONS: Regulation of astrocytic mitochondrial function and redox status by IGF-1 is essential to maintain astrocytic function and coordinate hippocampal-dependent spatial learning. Age-related astrocytic dysfunction caused by diminished IGF-1 signaling may contribute to the pathogenesis of Alzheimer's disease and other age-associated cognitive pathologies.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Astrocitos/metabolismo , Memoria a Corto Plazo , Mitocondrias/metabolismo , Receptor IGF Tipo 1/genética , Envejecimiento/metabolismo , Animales , Células Cultivadas , Glucosa/metabolismo , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Receptor IGF Tipo 1/metabolismo , Transducción de Señal
19.
Mol Cell Neurosci ; 88: 33-42, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29217410

RESUMEN

Ohtahara syndrome, also known as type 4 of Early Infantile Epileptic Encephalopathy with suppression bursts (EIEE-4) is currently an untreatable disorder that presents with seizures and impaired cognition. EIEE-4 patients have mutations most frequently in the STXBP1 gene encoding a Sec protein, munc18-1. The exact molecular mechanism of how these munc18-1 mutations cause impaired cognition, remains elusive. The leading haploinsufficiency hypothesis posits that mutations in munc18-1 render the protein unstable leading to its degradation. Expression driven by the healthy allele is not sufficient to maintain the physiological function resulting in haploinsufficiency. The aim of this study has been to understand how munc18-1 haploinsufficiency causes cognitive impairment seen in EIEE-4. Here we present results from behavioral to cellular effects from a mouse model of munc18-1 haploinsufficiency. Munc18-1 heterozygous knock-out mice showed impaired spatial learning and memory in behavior tests as well as reduced synaptic plasticity in hippocampal CA1 long-term potentiation. Cultured munc18-1 heterozygous hippocampal neurons had significantly slower rate of synaptic vesicle release and decreased readily releasable vesicle pool compared to wild-type control neurons in fluorescent FM dye assays. These results demonstrate that reduced munc18-1 levels are sufficient to impair learning and memory by reducing neurotransmitter release. Therefore, our study implicates munc18-1 haploinsufficiency as a primary cause of cognitive impairment seen in EIEE-4 patients.


Asunto(s)
Haploinsuficiencia/genética , Aprendizaje/fisiología , Memoria/fisiología , Proteínas Munc18/genética , Espasmos Infantiles/genética , Animales , Encéfalo/fisiopatología , Heterocigoto , Ratones Noqueados , Mutación/genética , Neuronas/metabolismo , Transmisión Sináptica/genética , Vesículas Sinápticas/metabolismo
20.
Geroscience ; 39(2): 129-145, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28409331

RESUMEN

Reduced circulating levels of IGF-1 have been proposed as a conserved anti-aging mechanism that contributes to increased lifespan in diverse experimental models. However, IGF-1 has also been shown to be essential for normal development and the maintenance of tissue function late into the lifespan. These disparate findings suggest that IGF-1 may be a pleiotropic modulator of health and aging, as reductions in IGF-1 may be beneficial for one aspect of aging, but detrimental for another. We postulated that the effects of IGF-1 on tissue health and function in advanced age are dependent on the tissue, the sex of the animal, and the age at which IGF-1 is manipulated. In this study, we examined how alterations in IGF-1 levels at multiple stages of development and aging influence overall lifespan, healthspan, and pathology. Specifically, we investigated the effects of perinatal, post-pubertal, and late-adult onset IGF-1 deficiency using genetic and viral approaches in both male and female igf f/f C57Bl/6 mice. Our results support the concept that IGF-1 levels early during lifespan establish the conditions necessary for subsequent healthspan and pathological changes that contribute to aging. Nevertheless, these changes are specific for each sex and tissue. Importantly, late-life IGF-1 deficiency (a time point relevant for human studies) reduces cancer risk but does not increase lifespan. Overall, our results indicate that the levels of IGF-1 during development influence late-life pathology, suggesting that IGF-1 is a developmental driver of healthspan, pathology, and lifespan.


Asunto(s)
Pleiotropía Genética , Estado de Salud , Factor I del Crecimiento Similar a la Insulina/fisiología , Longevidad , Caracteres Sexuales , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA