Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202409530, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152096

RESUMEN

Going beyond currently reported two electron transformations that formed the core backdrop of asymmetric catalytic site-selective carbohydrate polyol functionalizations, we herein report a seminal demonstration of an enantioconvergent copper catalyzed site-selective etherification of minimally protected saccharides through a single-electron radical pathway. Further, this strategy paves a rare strategy, through which a carboxamide scaffold that is present in some glycomimetics of pharmacological relevance, can be selectively introduced. In light of the burgeoning interest in chiral radical catalysis, and the virtual absence of such stereocontrol broadly in carbohydrate synthesis, our strategy showcased the unknown capability of chiral radical copper catalysis as a contemporary tool to address the formidable site-selectivity challenge on a remarkable palette of naturally occurring saccharides. When reducing sugars were employed, a further dynamic kinetic resolution type glycosylation can be activated by the catalytic system to selectively generate the challenging ß-O-glycosides.

2.
J Am Chem Soc ; 146(15): 10608-10620, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38564319

RESUMEN

The use of noncovalent interactions (NCIs) has received significant attention as a pivotal synthetic handle. Recently, the exploitation of unconventional NCIs has gained considerable traction in challenging reaction manifolds such as glycosylation due to their capacity to facilitate entry into difficult-to-access sugars and glycomimetics. While investigations involving oxacyclic pyrano- or furanoside scaffolds are relatively common, methods that allow the selective synthesis of biologically important iminosugars are comparatively rare. Here, we report the capacity of a phosphonochalcogenide (PCH) to catalyze the stereoselective α-iminoglycosylation of iminoglycals with a wide array of glycosyl acceptors with remarkable protecting group tolerance. Mechanistic studies have illuminated the counterintuitive role of the catalyst in serially activating both the glycosyl donor and acceptor in the up/downstream stages of the reaction through chalcogen bonding (ChB). The dynamic interaction of chalcogens with substrates opens up new mechanistic opportunities based on iterative ChB catalyst engagement and disengagement in multiple elementary steps.

3.
Angew Chem Int Ed Engl ; 63(29): e202405706, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38687567

RESUMEN

The utility of unconventional noncovalent interactions (NCIs) such as chalcogen bonding has lately emerged as a robust platform to access synthetically difficult glycosides stereoselectively. Herein, we disclose the versatility of a phosphonochalcogenide (PCH) catalyst to facilitate access into the challenging, but biologically interesting 7-membered ring α,α'-C-disubstituted oxepane core through an α-selective strain-release C-glycosylation. Methodically, this strategy represents a switch from more common but entropically less desired macrocyclizations to a thermodynamically favored ring-expansion approach. In light of the general lack of stereoselective methods to access C-septanosides, a remarkable palette of silyl-based nucleophiles can be reliably employed in our method. This include a broad variety of useful synthons, such as easily available silyl-allyl, silyl-enol ether, silyl-ketene acetal, vinylogous silyl-ketene acetal, silyl-alkyne and silylazide reagents. Mechanistic investigations suggest that a mechanistic shift towards an intramolecular aglycone transposition involving a pentacoordinate silicon intermediate is likely responsible in steering the stereoselectivity.

4.
Angew Chem Int Ed Engl ; 63(21): e202400912, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38530140

RESUMEN

Herein, we demonstrate the robustness of a synergistic chiral Pd/organoboron system in tackling a challenging suite of site-, regio-, enantio- and diastereoselectivity issues across a considerable palette of biologically relevant carbohydrate polyols, when prochiral alkoxyallenes were employed as electrophiles. In view of the burgeoning role of noncovalent interactions (NCIs) in stereoselective carbohydrate synthesis, our mechanistic experiments and DFT modeling of the reaction path unexpectedly revealed that NCIs such as hydrogen bonding and CH-π interactions between the resting states of the Pd-π-allyl complex and the borinate saccharide are critically involved in the stereoselectivity control. Our strategy thus illuminates the untapped potential of harnessing NCIs in the context of transition metal catalysis to tackle stereoselectivity challenges in carbohydrate functionalization.

5.
Angew Chem Int Ed Engl ; 63(7): e202316667, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38116860

RESUMEN

Harnessing unconventional noncovalent interactions (NCIs) is emerging as a formidable synthetic approach in difficult-to-access glycosidic chemical space. C-Glycosylation, in particular, has gained a flurry of recent attention. However, most reported methods are restricted to the relatively facile access to α-C-glycosides. Herein, we disclose a ß-stereoselective glycosylation of indoles by employing a phosphonoselenide catalyst. The robustness of this protocol is exemplified by its amenability for reaction at both the indolyl C- and N- reactivity sites. In contrast to previous reports, in which the chalcogens were solely involved in Lewis acidic activation, our mechanistic investigation unraveled that the often neglected flanking aromatic substituents of phosphonoselenides can substantially contribute to catalysis by engaging in π-interactions. Computations and NMR spectroscopy indicated that the chalcogenic and aromatic components of the catalyst can be collectively exploited to foster conformational distortion of the glycal away from the usual half-chair to the boat conformation, which liberates the convex ß-face for nucleophilic attack.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...