Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 6: 34125, 2016 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-27671354

RESUMEN

TNF-induced signaling mediates pleiotropic biological consequences including inflammation, immunity, cell proliferation and apoptosis. Misregulation of TNF signaling has been attributed as a major cause of chronic inflammatory diseases and cancer. Jumonji domain-containing protein 8 (JMJD8) belongs to the JmjC family. However, only part of the family members has been described as hydroxylase enzymes that function as histone demethylases. Here, we report that JMJD8 positively regulates TNF-induced NF-κB signaling. Silencing the expression of JMJD8 using RNA interference (RNAi) greatly suppresses TNF-induced expression of several NF-κB-dependent genes. Furthermore, knockdown of JMJD8 expression reduces RIP ubiquitination, IKK kinase activity, delays IκBα degradation and subsequently blocks nuclear translocation of p65. In addition, JMJD8 deficiency enhances TNF-induced apoptosis. Taken together, these findings indicate that JMJD8 functions as a positive regulator of TNF-induced NF-κB signaling.

2.
Sci Rep ; 5: 8672, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25728279

RESUMEN

Emerging of drug resistant influenza A virus (IAV) has been a big challenge for anti-IAV therapy. In this study, we describe a relatively easy and safe cell-based screening system for anti-IAV replication inhibitors using a non-replicative strain of IAV. A nickel (II) complex of polyhydroxybenzaldehyde N4-thiosemicarbazone (NiPT5) was recently found to exhibit anti-inflammatory activity in vivo and in vitro. NiPT5 impedes the signaling cascades that lead to the activation of NF-κB in response to different stimuli, such as LPS and TNFα. Using our cell-based screening system, we report that pretreating cells with NiPT5 protects cells from influenza A virus (IAV) and vesicular stomatitis virus (VSV) infection. Furthermore, NiPT5 inhibits replication of IAV by inhibiting transcription and translation of vRNAs of IAV. Additionally, NiPT5 reduces IAV-induced type I interferon response and cytokines production. Moreover, NiPT5 prevents activation of NF-κB, and IRF3 in response to IAV infection. These results demonstrate that NiPT5 is a potent antiviral agent that inhibits the early phase of IAV replication.


Asunto(s)
Antivirales/análisis , Antivirales/farmacología , Evaluación Preclínica de Medicamentos , Virus de la Influenza A/efectos de los fármacos , Línea Celular Tumoral , Citocinas/metabolismo , Humanos , Factor 3 Regulador del Interferón/metabolismo , Interferones/metabolismo , FN-kappa B/metabolismo , Replicación Viral/efectos de los fármacos
3.
PLoS One ; 9(7): e103915, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25079219

RESUMEN

BACKGROUND: H3K9 methylation is one of the essential histone post-translational modifications for heterochromatin formation and transcriptional repression. Recently, several studies have demonstrated that H3K9 methylation negatively regulates the type I interferon response. RESULTS: We report the application of EHMT1 and EHMT2 specific chemical inhibitors to sensitize CML cell lines to interferon and imatinib treatments. Inhibition of EHMT1 and EHMT2 with BIX01294 enhances the cytotoxicity of IFNα2a in four CML cell lines, K562, KCL22, BV173 and KT1 cells. Chromatin immunoprecipitation assay shows that BIX01294 treatment enhances type I interferon response by reducing H3K9me2 at the promoters of interferon-stimulated genes. Additionally, BIX01294 treatment augments IFNα2a- and imatinib-mediated apoptosis in CML cell lines. Moreover, our data suggest that the expression level of EHMT1 and EHMT2 inversely correlates with the type I interferon responsiveness in CML cell lines. CONCLUSIONS: Our study sheds light on the role of EHMT1 and EHMT2 as potential targets in improving the efficacy of standard treatments of CML.


Asunto(s)
Antineoplásicos/farmacología , Azepinas/farmacología , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Interferón Tipo I/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Quinazolinas/farmacología , Apoptosis , Benzamidas/farmacología , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Expresión Génica/efectos de los fármacos , Células HeLa , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Humanos , Mesilato de Imatinib , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/enzimología , Piperazinas/farmacología , Pirimidinas/farmacología
4.
PLoS One ; 9(6): e100933, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24977407

RESUMEN

BACKGROUND: The biological properties of thiosemicarbazone have been widely reported. The incorporation of some transition metals such as Fe, Ni and Cu to thiosemicarbazone complexes is known to enhance its biological effects. In this study, we incorporated nickel(II) ions into thiosemicarbazone with N4-substitution groups H3L (H; H3L1, CH3; H3L2, C6H5; H3L3 and C2H5; H3L4) and examined its potential anti-inflammatory activity. METHODOLOGY/PRINCIPAL FINDINGS: Four ligands (1-4) and their respective nickel-containing complexes (5-8) were synthesized and characterized. The compounds synthesized were tested for their effects on NF-κB nuclear translocation, pro-inflammatory cytokines secretion and NF-κB transactivation activity. The active compound was further evaluated on its ability to suppress carrageenan-induced acute inflammation in vivo. A potential binding target of the active compound was also predicted by molecular docking analysis. CONCLUSIONS/SIGNIFICANCE: Among all synthesized compounds tested, we found that complex [Ni(H2L1)(PPh3)]Cl (5) (complex 5), potently inhibited IκBα degradation and NF-κB p65 nuclear translocation in LPS-stimulated RAW264.7 cells as well as TNFα-stimulated HeLa S3 cells. In addition, complex 5 significantly down-regulated LPS- or TNFα-induced transcription of NF-κB target genes, including genes that encode the pro-inflammatory cytokines TNFα, IFNß and IL6. Luciferase reporter assays confirmed that complex 5 inhibited the transactivation activity of NF-κB. Furthermore, the anti-inflammatory effect of complex 5 was also supported by its suppressive effect on carrageenan-induced paw edema formation in wild type C57BL/6 mice. Interestingly, molecular docking study showed that complex 5 potentially interact with the active site of IKKß. Taken together, we suggest complex 5 as a novel NF-κB inhibitor with potent anti-inflammatory effects.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Complejos de Coordinación/farmacología , Inflamación/tratamiento farmacológico , Níquel/química , Tiosemicarbazonas/química , Activación Transcripcional/efectos de los fármacos , Animales , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Carragenina , Línea Celular , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Células HeLa , Humanos , Quinasa I-kappa B/antagonistas & inhibidores , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/patología , Interferón beta/biosíntesis , Interferón beta/metabolismo , Interleucina-6/biosíntesis , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , FN-kappa B/antagonistas & inhibidores , FN-kappa B/genética , FN-kappa B/metabolismo , Transporte de Proteínas , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...