Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 4310, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35879348

RESUMEN

Anthropogenic nitrogen inputs cause major negative environmental impacts, including emissions of the important greenhouse gas N2O. Despite their importance, shifts in terrestrial N loss pathways driven by global change are highly uncertain. Here we present a coupled soil-atmosphere isotope model (IsoTONE) to quantify terrestrial N losses and N2O emission factors from 1850-2020. We find that N inputs from atmospheric deposition caused 51% of anthropogenic N2O emissions from soils in 2020. The mean effective global emission factor for N2O was 4.3 ± 0.3% in 2020 (weighted by N inputs), much higher than the surface area-weighted mean (1.1 ± 0.1%). Climate change and spatial redistribution of fertilisation N inputs have driven an increase in global emission factor over the past century, which accounts for 18% of the anthropogenic soil flux in 2020. Predicted increases in fertilisation in emerging economies will accelerate N2O-driven climate warming in coming decades, unless targeted mitigation measures are introduced.


Asunto(s)
Gases de Efecto Invernadero , Óxido Nitroso , Agricultura , Atmósfera , Nitrógeno/metabolismo , Óxido Nitroso/metabolismo , Suelo
2.
J Phys Chem A ; 110(51): 13736-43, 2006 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-17181329

RESUMEN

Infrared spectra of mass-selected F- -(CH4)n (n = 1-8) clusters are recorded in the CH stretching region (2500-3100 cm-1). Spectra for the n = 1-3 clusters are interpreted with the aid of ab initio calculations at the MP2/6-311++G(2df 2p) level, which suggest that the CH4 ligands bind to F- by equivalent, linear hydrogen bonds. Anharmonic frequencies for CH4 and F--CH4 are determined using the vibrational self-consistent field method with second-order perturbation theory correction. The n = 1 complex is predicted to have a C3v structure with a single CH group hydrogen bonded to F-. Its spectrum exhibits a parallel band associated with a stretching vibration of the hydrogen-bonded CH group that is red-shifted by 380 cm-1 from the nu1 band of free CH4 and a perpendicular band associated with the asymmetric stretching motion of the nonbonded CH groups, slightly red-shifted from the nu3 band of free CH4. As n increases, additional vibrational bands appear as a result of Fermi resonances between the hydrogen-bonded CH stretching vibrational mode and the 2nu4 overtone and nu2+nu4 combination levels of the methane solvent molecules. For clusters with n < or = 8, it appears that the CH4 molecules are accommodated in the first solvation shell, each being attached to the F- anion by equivalent hydrogen bonds.

3.
Phys Chem Chem Phys ; 7(19): 3419-25, 2005 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-16273142

RESUMEN

Infrared spectra of mass-selected Cl- -C2H4 and Br- -C2H4 complexes are recorded in the vicinity of the ethylene CH stretching vibrations (2700-3300 cm(-1) using vibrational predissociation spectroscopy. Spectra of both complexes exhibit 6 prominent peaks in the CH stretch region. Comparison with calculated frequencies reveal that the 4 higher frequency bands are associated with CH stretching modes of the C2H4 subunit, while the 2 weaker bands are assigned as overtone or combinations bands gaining intensity through interaction with the CH stretches. Ab initio calculations at the MP2/aug-cc-pVDZ level suggest that C2H4 preferentially forms a single linear H-bond with Cl- and Br- although a planar bifurcated configuration lies only slightly higher in energy (by 110 and 16 cm(-1), respectively). One-dimensional potential energy curves describing the in-plane intermolecular bending motion are developed which are used to determine the corresponding vibrational energies and wavefunctions. Experimental and theoretical results suggest that in their ground vibrational state the Cl- -C2H4 and Br- -C2H4 complexes are localized in the single H-bonded configuration, but that with the addition of modest amounts of internal energy, the in-plane bending wavefunction also has significant amplitude in the bifurcated structure.

4.
Rev Laryngol Otol Rhinol (Bord) ; 126(2): 105-10, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16180350

RESUMEN

UNLABELLED: Ingested foreign bodies which migrate extraluminally, although rare in occurrence, are fraught with the potential to cause life-threatening complications. PURPOSE OF THE STUDY: To discuss the management of this pathology. MATERIAL AND METHODS: A series of four patients with such occurrences is presented. CONCLUSION: A discussion on the safe management of such seemingly innocuous foreign bodies allows the authors to propose a therapeutical algorythm.


Asunto(s)
Esófago/diagnóstico por imagen , Migración de Cuerpo Extraño/diagnóstico por imagen , Adulto , Anciano , Humanos , Persona de Mediana Edad , Tomografía Computarizada por Rayos X
5.
J Chem Phys ; 121(5): 2085-93, 2004 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-15260762

RESUMEN

The rotationally resolved infrared photodissociation spectrum of Cl(-)-HD is measured in the HD stretch region. Two Sigma-Sigma bands are observed, corresponding to transitions from the ground state [the (nuHD = 0, n = 0) level] and first excited intermolecular bend state [the (nuHD = 0, n = 1) level]. The (nuHD = 0, n = 0) and (nuHD = 0, n = 1) states are predominantly associated with the linear Cl-...DH and Cl-...HD geometries, respectively. The spectrum is complicated by perturbative interactions between levels of the (nuHD = 0, n = 0) and (nuHD = 0, n = 1) rotational manifolds and between levels of the (nuHD = 1, n = 0) and (nuHD = 1, n = 1) rotational manifolds. A global fit to the transition frequencies, taking the lower and upper state perturbations into account, yields zero-order rotational and centrifugal distortion constants and allows us to establish that the (nuHD = 0, n = 1, J" = 0) level lies 13.7 cm(-1) above the (nuHD = 0, n = 0, J" = 0) level. Rovibrational energy level calculations performed using a recent ab initio potential energy surface confirm the picture emerging from the experimental data and provide good agreement with measured molecular parameters. The results emphasize the importance of quantum mechanical interconversion between two isomeric structures of a simple anion complex.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...