Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Prog Retin Eye Res ; 99: 101243, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38218527

RESUMEN

Since the groundbreaking approval of the first anti-VEGF therapy in 2004, the retinal therapeutics field has undergone a remarkable transformation, witnessing a surge in novel, disease-modifying therapeutics for a broad spectrum of retinal diseases, extending beyond exudative VEGF-driven conditions. The surge in scientific advancement and the pressing, unmet, medical need have captured the attention of venture capital investors, who have collectively invested close to $10 billion in research and development of new retinal therapeutics between 2004 and 2023. Notably, the field of exudative diseases has gradually shifted away from trying to outcompete anti-VEGF therapeutics towards lowering the overall treatment burden by reducing injection frequency. Simultaneously, a new era has emerged in the non-exudative field, targeting prevalent conditions like dry AMD and rare indications such as Retinitis pigmentosa. This has led to promising drug candidates in development, culminating in the landmark approval of Luxturna for a rare form of Retinitis pigmentosa. The validation of new mechanisms, such as the complement pathway in dry AMD has paved the way for the approvals of Syvovre (Apellis) and Izervay (Iveric/Astellas), marking the first two therapies for this condition. In this comprehensive review, we share our view on the cumulative lessons from the past two decades in developing retinal therapeutics, covering both positive achievements and challenges. We also contextualize the investments, strategic partnering deals, and acquisitions of biotech companies, pharmaceutical companies venture capital investors in retinal therapeutics, respectively. Finally, we provide an outlook and potentially a forward-looking roadmap on novel retinal therapeutics, highlighting the emergence of potential new intervention strategies, such as cell-based therapies, gene editing, and combination therapies. We conclude that upcoming developments have the potential to further stimulate venture capital investments, which ultimately could facilitate the development and delivery of new therapies to patients in need.


Asunto(s)
Inversiones en Salud , Retinitis Pigmentosa , Humanos
2.
Genome Biol ; 23(1): 202, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163261

RESUMEN

BACKGROUND: Perturbation of DNA methyltransferases (DNMTs) and of the active DNA demethylation pathway via ten-eleven translocation (TET) methylcytosine dioxygenases results in severe developmental defects and embryonic lethality. Dynamic control of DNA methylation is therefore vital for embryogenesis, yet the underlying mechanisms remain poorly understood. RESULTS: Here we report a single-cell transcriptomic atlas from Dnmt and Tet mutant mouse embryos during early organogenesis. We show that both the maintenance and de novo methyltransferase enzymes are dispensable for the formation of all major cell types at E8.5. However, DNA methyltransferases are required for silencing of prior or alternative cell fates such as pluripotency and extraembryonic programmes. Deletion of all three TET enzymes produces substantial lineage biases, in particular, a failure to generate primitive erythrocytes. Single-cell multi-omics profiling moreover reveals that this is linked to a failure to demethylate distal regulatory elements in Tet triple-knockout embryos. CONCLUSIONS: This study provides a detailed analysis of the effects of perturbing DNA methylation on mouse organogenesis at a whole organism scale and affords new insights into the regulatory mechanisms of cell fate decisions.


Asunto(s)
Metilación de ADN , Dioxigenasas , Animales , ADN/metabolismo , Dioxigenasas/genética , Metiltransferasas/metabolismo , Ratones , Organogénesis/genética
3.
Nat Genet ; 53(2): 215-229, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33526924

RESUMEN

Naive epiblast and embryonic stem cells (ESCs) give rise to all cells of adults. Such developmental plasticity is associated with genome hypomethylation. Here, we show that LIF-Stat3 signaling induces genomic hypomethylation via metabolic reconfiguration. Stat3-/- ESCs show decreased α-ketoglutarate production from glutamine, leading to increased Dnmt3a and Dnmt3b expression and DNA methylation. Notably, genome methylation is dynamically controlled through modulation of α-ketoglutarate availability or Stat3 activation in mitochondria. Alpha-ketoglutarate links metabolism to the epigenome by reducing the expression of Otx2 and its targets Dnmt3a and Dnmt3b. Genetic inactivation of Otx2 or Dnmt3a and Dnmt3b results in genomic hypomethylation even in the absence of active LIF-Stat3. Stat3-/- ESCs show increased methylation at imprinting control regions and altered expression of cognate transcripts. Single-cell analyses of Stat3-/- embryos confirmed the dysregulated expression of Otx2, Dnmt3a and Dnmt3b as well as imprinted genes. Several cancers display Stat3 overactivation and abnormal DNA methylation; therefore, the molecular module that we describe might be exploited under pathological conditions.


Asunto(s)
Blastocisto/fisiología , Metilación de ADN/fisiología , Células Madre Embrionarias/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Células Madre Embrionarias/fisiología , Regulación de la Expresión Génica , Histonas/metabolismo , Ácidos Cetoglutáricos/metabolismo , Factor Inhibidor de Leucemia/metabolismo , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción Otx/genética , Factores de Transcripción Otx/metabolismo , Células Madre Pluripotentes/metabolismo , Regiones Promotoras Genéticas , Factor de Transcripción STAT3/genética , ADN Metiltransferasa 3B
4.
Nature ; 576(7787): 487-491, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31827285

RESUMEN

Formation of the three primary germ layers during gastrulation is an essential step in the establishment of the vertebrate body plan and is associated with major transcriptional changes1-5. Global epigenetic reprogramming accompanies these changes6-8, but the role of the epigenome in regulating early cell-fate choice remains unresolved, and the coordination between different molecular layers is unclear. Here we describe a single-cell multi-omics map of chromatin accessibility, DNA methylation and RNA expression during the onset of gastrulation in mouse embryos. The initial exit from pluripotency coincides with the establishment of a global repressive epigenetic landscape, followed by the emergence of lineage-specific epigenetic patterns during gastrulation. Notably, cells committed to mesoderm and endoderm undergo widespread coordinated epigenetic rearrangements at enhancer marks, driven by ten-eleven translocation (TET)-mediated demethylation and a concomitant increase of accessibility. By contrast, the methylation and accessibility landscape of ectodermal cells is already established in the early epiblast. Hence, regulatory elements associated with each germ layer are either epigenetically primed or remodelled before cell-fate decisions, providing the molecular framework for a hierarchical emergence of the primary germ layers.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Gástrula/citología , Gástrula/metabolismo , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica , ARN/genética , Análisis de la Célula Individual , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Cromatina/genética , Cromatina/metabolismo , Desmetilación , Cuerpos Embrioides/citología , Endodermo/citología , Endodermo/embriología , Endodermo/metabolismo , Elementos de Facilitación Genéticos/genética , Epigenoma/genética , Eritropoyesis , Análisis Factorial , Gástrula/embriología , Gastrulación/fisiología , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , ARN/análisis , Factores de Tiempo , Dedos de Zinc
5.
Cell Stem Cell ; 25(3): 388-406.e8, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31422912

RESUMEN

Understanding how cell identity transitions occur and whether there are multiple paths between the same beginning and end states are questions of wide interest. Here we show that acquisition of naive pluripotency can follow transcriptionally and mechanistically distinct routes. Starting from post-implantation epiblast stem cells (EpiSCs), one route advances through a mesodermal state prior to naive pluripotency induction, whereas another transiently resembles the early inner cell mass and correspondingly gains greater developmental potency. These routes utilize distinct signaling networks and transcription factors but subsequently converge on the same naive endpoint, showing surprising flexibility in mechanisms underlying identity transitions and suggesting that naive pluripotency is a multidimensional attractor state. These route differences are reconciled by precise expression of Oct4 as a unifying, essential, and sufficient feature. We propose that fine-tuned regulation of this "transition factor" underpins multidimensional access to naive pluripotency, offering a conceptual framework for understanding cell identity transitions.


Asunto(s)
Masa Celular Interna del Blastocisto/fisiología , Estratos Germinativos/fisiología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/fisiología , Animales , Diferenciación Celular , Línea Celular , Plasticidad de la Célula , Reprogramación Celular , Femenino , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Ratones , Ratones Endogámicos C57BL , Factor 3 de Transcripción de Unión a Octámeros/genética , Transducción de Señal
6.
Cell Stem Cell ; 24(5): 785-801.e7, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31031137

RESUMEN

The gene regulatory network (GRN) of naive mouse embryonic stem cells (ESCs) must be reconfigured to enable lineage commitment. TCF3 sanctions rewiring by suppressing components of the ESC transcription factor circuitry. However, TCF3 depletion only delays and does not prevent transition to formative pluripotency. Here, we delineate additional contributions of the ETS-family transcription factor ETV5 and the repressor RBPJ. In response to ERK signaling, ETV5 switches activity from supporting self-renewal and undergoes genome relocation linked to commissioning of enhancers activated in formative epiblast. Independent upregulation of RBPJ prevents re-expression of potent naive factors, TBX3 and NANOG, to secure exit from the naive state. Triple deletion of Etv5, Rbpj, and Tcf3 disables ESCs, such that they remain largely undifferentiated and locked in self-renewal, even in the presence of differentiation stimuli. Thus, genetic elimination of three complementary drivers of network transition stalls developmental progression, emulating environmental insulation by small-molecule inhibitors.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Neuronas/fisiología , Células Madre Pluripotentes/fisiología , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Línea Celular , Linaje de la Célula , Autorrenovación de las Células , Proteínas de Unión al ADN/genética , Técnicas de Inactivación de Genes , Redes Reguladoras de Genes , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , ARN Interferente Pequeño/genética , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/genética
7.
J Natl Cancer Inst ; 109(1)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27576906

RESUMEN

Although whole-genome sequencing has uncovered a large number of mutations that drive tumorigenesis, functional ratification for most mutations remains sparse. Here, we present an approach to test functional relevance of tumor mutations employing CRISPR/Cas9. Combining comprehensive sgRNA design and an efficient reporter assay to nominate efficient and selective sgRNAs, we establish a pipeline to dissect roles of cancer mutations with potential applicability to personalized medicine and future therapeutic use.


Asunto(s)
Proteínas Bacterianas , Carcinoma/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Neoplasias del Colon/genética , Endonucleasas , Leucemia Mieloide Aguda/genética , Mutación/genética , ARN Guía de Kinetoplastida/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteína 9 Asociada a CRISPR , Biología Computacional , División del ADN , Endonucleasas/genética , Endonucleasas/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Células HeLa , Humanos , Proteínas Nucleares/genética , Nucleofosmina , Proteínas Proto-Oncogénicas B-raf/genética , Transfección
8.
Plant Cell ; 27(9): 2582-99, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26392078

RESUMEN

Circadian control of gene expression is well characterized at the transcriptional level, but little is known about diel or circadian control of translation. Genome-wide translation state profiling of mRNAs in Arabidopsis thaliana seedlings grown in long day was performed to estimate ribosome loading per mRNA. The experiments revealed extensive translational regulation of key biological processes. Notably, translation of mRNAs for ribosomal proteins and mitochondrial respiration peaked at night. Central clock mRNAs are among those subject to fluctuations in ribosome loading. There was no consistent phase relationship between peak translation states and peak transcript levels. The overlay of distinct transcriptional and translational cycles can be expected to alter the waveform of the protein synthesis rate. Plants that constitutively overexpress the clock gene CCA1 showed phase shifts in peak translation, with a 6-h delay from midnight to dawn or from noon to evening being particularly common. Moreover, cycles of ribosome loading that were detected under continuous light in the wild type collapsed in the CCA1 overexpressor. Finally, at the transcript level, the CCA1-ox strain adopted a global pattern of transcript abundance that was broadly correlated with the light-dark environment. Altogether, these data demonstrate that gene-specific diel cycles of ribosome loading are controlled in part by the circadian clock.


Asunto(s)
Arabidopsis/genética , Relojes Circadianos/genética , Regulación de la Expresión Génica de las Plantas , ARN Mensajero/metabolismo , Ribosomas/genética , Proteínas de Arabidopsis/genética , Ritmo Circadiano/genética , Ontología de Genes , Luz , Biosíntesis de Proteínas , ARN Mensajero/genética , Ribosomas/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA