Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Allergy Asthma Immunol Res ; 15(2): 246-261, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37021509

RESUMEN

PURPOSE: Asthma is a frequent chronic inflammatory bronchial disease affecting more than 300 million patients worldwide, 70% of whom are secondary to allergy. The diversity of asthmatic endotypes contributes to their complexity. The inter-relationship between allergen and other exposure and the airway microbiome adds to the phenotypic diversity and defines the natural course of asthma. Here, we compared the mouse models of house dust mite (HDM)-induced allergic asthma. Allergic sensitization was performed via various routes and associated with outcomes. METHODS: Mice were sensitized with HDM via the oral, nasal or percutaneous routes. Lung function, barrier integrity, immune response and microbiota composition were analyzed. RESULTS: Severe impairment of respiratory function was observed in the mice sensitized by the nasal and cutaneous paths. It was associated with epithelial dysfunction characterized by an increased permeability secondary to junction protein disruption. Such sensitization paths induced a mixed eosinophilic and neutrophilic inflammatory response with high interleukin (IL)-17 airway secretion. In contrast, orally sensitized mice showed a mild impairment of respiratory function. Epithelial dysfunction was mild with increased mucus production, but preserved epithelial junctions. Regarding lung microbiota, sensitization provoked a significant loss of diversity. At the genus level, Cutibacterium, Acinetobacter, Streptococcus and Lactobacillus were found to be modulated according to the sensitization pathway. An increase in theanti-inflammatory microbiota metabolites was observed in the oral-sensitization group. CONCLUSIONS: Our study highlights the strong impact of the sensitization route on the pathophysiology and the critical phenotypic diversity of allergic asthma in a mouse model.

2.
J Neurointerv Surg ; 15(6): 566-571, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35577561

RESUMEN

BACKGROUND: Geometrical parameters, including arterial bifurcation angle, tortuosity, and arterial diameters, have been associated with the pathophysiology of intracranial aneurysm (IA) formation. The aim of this study was to investigate whether these parameters were present before or if they resulted from IA formation and growth. METHODS: Patients from nine academic centers were retrospectively identified if they presented with a de novo IA or a significant IA growth on subsequent imaging. For each patient, geometrical parameters were extracted using a semi-automated algorithm and compared between bifurcations with IA formation or growth (aneurysmal group), and their contralateral side without IA (control group). These parameters were compared at two different times using univariable models, multivariable models, and a sensitivity analysis with paired comparison. RESULTS: 46 patients were included with 21 de novo IAs (46%) and 25 significant IA growths (54%). The initial angle was not different between the aneurysmal and control groups (129.7±42.1 vs 119.8±34.3; p=0.264) but was significantly wider at the final stage (140.4±40.9 vs 121.5±34.1; p=0.032), with a more important widening of the aneurysmal angle (10.8±15.8 vs 1.78±7.38; p=0.001). Variations in other parameters were not significant. These results were confirmed by paired comparisons. CONCLUSION: Our study suggests that wider bifurcation angles that have long been deemed causal factors for IA formation or growth may be secondary to IA formation at pathologic bifurcation sites. This finding has implications for our understanding of IA formation pathophysiology.


Asunto(s)
Aneurisma Intracraneal , Humanos , Estudios Retrospectivos , Arteria Cerebral Media/patología , Angiografía Cerebral/métodos , Imagenología Tridimensional
3.
Proc Natl Acad Sci U S A ; 119(45): e2116167119, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322767

RESUMEN

How cells adjust their growth to the spatial and mechanical constraints of their surrounding environment is central to many aspects of biology. Here, we examined how extracellular matrix (ECM) rigidity affects cell division. We found that cells divide more rapidly when cultured on rigid substrates. While we observed no effect of ECM rigidity on rounding or postmitotic spreading duration, we found that changes in matrix stiffness impact mitosis progression. We noticed that ECM elasticity up-regulates the expression of the linker of nucleoskeleton and cytoskeleton (LINC) complex component SUN2, which in turn promotes metaphase-to-anaphase transition by acting on mitotic spindle formation, whereas when cells adhere to soft ECM, low levels of SUN2 expression perturb astral microtubule organization and delay the onset of anaphase.


Asunto(s)
Citoesqueleto , Matriz Nuclear , Matriz Nuclear/metabolismo , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Mitosis , Matriz Extracelular , Huso Acromático , Anafase
4.
BMJ Open Respir Res ; 9(1)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36109087

RESUMEN

Asthma is a frequent respiratory condition whose pathophysiology relies on altered interactions between bronchial epithelium, smooth muscle cells (SMC) and immune responses. Those leads to classical hallmarks of asthma: airway hyper-responsiveness, bronchial remodelling and chronic inflammation. Airway smooth muscle biology and pathophysiological implication in asthma are now better understood. Precise deciphering of intracellular signalling pathways regulating smooth muscle contraction highlighted the critical roles played by small GTPases of Rho superfamily. Beyond contractile considerations, active involvement of airway smooth muscle in bronchial remodelling mechanisms is now established. Not only cytokines and growth factors, such as fibroblats growth factor or transforming growth factor-ß, but also extracellular matrix composition have been demonstrated as potent phenotype modifiers for airway SMC. Although basic science knowledge has grown significantly, little of it has translated into improvement in asthma clinical practice. Evaluation of airway smooth muscle function is still limited to its contractile activity. Moreover, it relies on tools, such as spirometry, that give only an overall assessment and not a specific one. Interesting technics such as forced oscillometry or specific imagery (CT and MRI) give new perspectives to evaluate other aspects of airway muscle such as bronchial remodelling. Finally, except for the refinement of conventional bronchodilators, no new drug therapy directly targeting airway smooth muscle proved its efficacy. Bronchial thermoplasty is an innovative and efficient therapeutic strategy but is only restricted to a small proportion of severe asthmatic patients. New diagnostic and therapeutic strategies specifically oriented toward airway smooth muscle are needed to improve global asthma care.


Asunto(s)
Asma , Proteínas de Unión al GTP Monoméricas , Asma/tratamiento farmacológico , Broncodilatadores , Citocinas/metabolismo , Citocinas/uso terapéutico , Humanos , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/uso terapéutico , Miocitos del Músculo Liso/metabolismo , Factores de Crecimiento Transformadores/metabolismo , Factores de Crecimiento Transformadores/uso terapéutico
6.
Biochem Pharmacol ; 203: 115180, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35853497

RESUMEN

Small molecule inhibitors of GTPases are increasingly considered for the treatment of multiple human pathologies. The GTPase Rac1 (Ras-related C3 botulinum toxin substrate 1) plays major roles in vital cellular processes, notably in the control cell motility and dynamic, the regulation of oxidative stress, and in inflammatory and immune surveillance. As such, Rac1 is viewed as a potential target to combat cancers but also diverse inflammatory, metabolic, neurodegenerative, respiratory, cardiovascular, viral, and parasitic diseases. Potent and selective Rac1 inhibitors have been identified and designed, such as compounds GYS32661 and MBQ-167 both in preclinical development for the treatment of advanced solid tumors. The pleiotropic roles and ubiquitous expression of the protein can be viewed as limitations for anticancer approaches. However, the frequent overexpression and/or hyperactivation of the Rac1 in difficult-to-treat chemoresistant cancers, make Rac1 an attractive target in oncology. The key roles of Rac1 in multiple cellular pathways, together with its major implications in carcinogenesis, tumor proliferation and metastasis, support the development of small molecule inhibitors. The challenge is high and the difficulty shall not be underestimated, but the target is innovative and promising in combination with chemo- and/or immuno-therapy. Opportunities and challenges associated with the targeting of Rac1 are discussed.


Asunto(s)
Estrés Oxidativo , Proteína de Unión al GTP rac1 , Movimiento Celular , Humanos , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
7.
Int J Mol Sci ; 23(10)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35628350

RESUMEN

Hypoxia and inflammation play a major role in revascularization following ischemia. Sildenafil inhibits phosphodiesterase-5, increases intracellular cGMP and induces revascularization through a pathway which remains incompletely understood. Thus, we investigated the effect of sildenafil on post-ischemic revascularization. The left femoral artery was ligated in control and sildenafil-treated (25 mg/kg per day) rats. Vascular density was evaluated and expressed as the left/right leg (L/R) ratio. In control rats, L/R ratio was 33 ± 2% and 54 ± 9%, at 7- and 21-days post-ligation, respectively, and was significantly increased in sildenafil-treated rats to 47 ± 4% and 128 ± 11%, respectively. A neutralizing anti-VEGF antibody significantly decreased vascular density (by 0.48-fold) in control without effect in sildenafil-treated animals. Blood flow and arteriolar density followed the same pattern. In the ischemic leg, HIF-1α and VEGF expression levels increased in control, but not in sildenafil-treated rats, suggesting that sildenafil did not induce angiogenesis. PI3-kinase, Akt and eNOS increased after 7 days, with down-regulation after 21 days. Sildenafil induced outward remodeling or arteriogenesis in mesenteric resistance arteries in association with eNOS protein activation. We conclude that sildenafil treatment increased tissue blood flow and arteriogenesis independently of VEGF, but in association with PI3-kinase, Akt and eNOS activation.


Asunto(s)
Miembro Posterior , Isquemia , Óxido Nítrico Sintasa de Tipo III , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Citrato de Sildenafil , Animales , Miembro Posterior/irrigación sanguínea , Miembro Posterior/efectos de los fármacos , Miembro Posterior/metabolismo , Isquemia/tratamiento farmacológico , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Transducción de Señal , Citrato de Sildenafil/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo
8.
Front Cardiovasc Med ; 9: 815668, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35224050

RESUMEN

Intracranial aneurysm (IA) is a frequent and generally asymptomatic cerebrovascular abnormality characterized as a localized dilation and wall thinning of intracranial arteries that preferentially arises at the arterial bifurcations of the circle of Willis. The devastating complication of IA is its rupture, which results in subarachnoid hemorrhage that can lead to severe disability and death. IA affects about 3% of the general population with an average age for detection of rupture around 50 years. IAs, whether ruptured or unruptured, are more common in women than in men by about 60% overall, and more especially after the menopause where the risk is double-compared to men. Although these data support a protective role of estrogen, differences in the location and number of IAs observed in women and men under the age of 50 suggest that other underlying mechanisms participate to the greater IA prevalence in women. The aim of this review is to provide a comprehensive overview of the current data from both clinical and basic research and a synthesis of the proposed mechanisms that may explain why women are more prone to develop IA.

9.
Br J Pharmacol ; 179(13): 3418-3429, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35064565

RESUMEN

BACKGROUND AND PURPOSE: Pulmonary hypertension (PH) is a multifactorial chronic disease characterized by an increase in pulmonary artery (PA) resistance leading to right ventricle (RV) failure. Endothelial dysfunction and alteration of NO/cGMP signalling in PA plays a major role in PH. We recently described the involvement of the Rho protein Rac1 in the control of systemic blood pressure through its involvement in NO-mediated relaxation of arterial smooth muscle cell (SMC). The aim of this study was to analyse the role of SMC Rac1 in PH. EXPERIMENTAL APPROACH: PH is induced by exposure of control and SMC Rac1-deficient (SM-Rac1-KO) mice to chronic hypoxia (10% O2 , 4 weeks). PH is assessed by the measurement of RV systolic pressure and hypertrophy. PA reactivity is analysed by isometric tension measurements. PA remodelling is quantified by immunofluorescence in lung sections and ROS are detected using the dihydroethidium probe and electronic paramagnetic resonance analysis. Rac1 activity is determined by immunofluorescence. KEY RESULTS: Rac1 activation in PA of hypoxic mice and patients with idiopathic PH. Hypoxia-induced rise in RV systolic pressure, RV hypertrophy and loss of endothelium-dependent relaxation were significantly decreased in SM-Rac1-KO mice compared to control mice. SMC Rac1 deletion also limited hypoxia-induced PA remodelling and ROS production in pulmonary artery smooth muscle cells (PASMCs). CONCLUSION AND IMPLICATIONS: Our results provide evidence for a protective effect of SM Rac1 deletion against hypoxic PH. Rac1 activity in PASMCs plays a causal role in PH by favouring ROS-dependent PA remodelling and endothelial dysfunction induced by chronic hypoxia.


Asunto(s)
Hipertensión Pulmonar , Proteína de Unión al GTP rac1 , Animales , Proliferación Celular , Humanos , Hipertrofia Ventricular Derecha , Hipoxia/metabolismo , Ratones , Ratones Noqueados , Músculo Liso Vascular , Miocitos del Músculo Liso , Arteria Pulmonar , Especies Reactivas de Oxígeno/metabolismo , Remodelación Vascular , Proteína de Unión al GTP rac1/metabolismo
10.
Front Mol Biosci ; 8: 643728, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34109211

RESUMEN

The interaction between two proteins may involve local movements, such as small side-chains re-positioning or more global allosteric movements, such as domain rearrangement. We studied how one can build a precise and detailed protein-protein interface using existing protein-protein docking methods, and how it can be possible to enhance the initial structures using molecular dynamics simulations and data-driven human inspection. We present how this strategy was applied to the modeling of RHOA-ARHGEF1 interaction using similar complexes of RHOA bound to other members of the Rho guanine nucleotide exchange factor family for comparative assessment. In parallel, a more crude approach based on structural superimposition and molecular replacement was also assessed. Both models were then successfully refined using molecular dynamics simulations leading to protein structures where the major data from scientific literature could be recovered. We expect that the detailed strategy used in this work will prove useful for other protein-protein interface design. The RHOA-ARHGEF1 interface modeled here will be extremely useful for the design of inhibitors targeting this protein-protein interaction (PPI).

11.
Thorax ; 76(4): 326-334, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542087

RESUMEN

BACKGROUND: Severe asthma is a chronic lung disease characterised by inflammation, airway hyperresponsiveness (AHR) and airway remodelling. The molecular mechanisms underlying uncontrolled airway smooth muscle cell (aSMC) proliferation involved in pulmonary remodelling are still largely unknown. Small G proteins of the Rho family (RhoA, Rac1 and Cdc42) are key regulators of smooth muscle functions and we recently demonstrated that Rac1 is activated in aSMC from allergic mice. The objective of this study was to assess the role of Rac1 in severe asthma-associated airway remodelling. METHODS AND RESULTS: Immunofluorescence analysis in human bronchial biopsies revealed an increased Rac1 activity in aSMC from patients with severe asthma compared with control subjects. Inhibition of Rac1 by EHT1864 showed that Rac1 signalling controlled human aSMC proliferation induced by mitogenic stimuli through the signal transducer and activator of transcription 3 (STAT3) signalling pathway. In vivo, specific deletion of Rac1 in SMC or pharmacological inhibition of Rac1 by nebulisation of NSC23766 prevented AHR and aSMC hyperplasia in a mouse model of severe asthma. Moreover, the Rac1 inhibitor prevented goblet cell hyperplasia and epithelial cell hypertrophy whereas treatment with corticosteroids had less effect. Nebulisation of NSC23766 also decreased eosinophil accumulation in the bronchoalveolar lavage of asthmatic mice. CONCLUSION: This study demonstrates that Rac1 is overactive in the airways of patients with severe asthma and is essential for aSMC proliferation. It also provides evidence that Rac1 is causally involved in AHR and airway remodelling. Rac1 may represent as an interesting target for treating both AHR and airway remodelling of patients with severe asthma.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Asma/metabolismo , Miocitos del Músculo Liso/metabolismo , Hipersensibilidad Respiratoria , Proteína de Unión al GTP rac1/metabolismo , Corticoesteroides/farmacología , Aminoquinolinas/administración & dosificación , Aminoquinolinas/farmacología , Animales , Biopsia , Líquido del Lavado Bronquioalveolar/citología , Estudios de Casos y Controles , Proliferación Celular , Modelos Animales de Enfermedad , Eosinófilos/metabolismo , Células Caliciformes/metabolismo , Humanos , Ratones , Pirimidinas/administración & dosificación , Pirimidinas/farmacología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
12.
J Neurol Neurosurg Psychiatry ; 92(2): 122-128, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33097563

RESUMEN

BACKGROUND AND PURPOSE: The ever-growing availability of imaging led to increasing incidentally discovered unruptured intracranial aneurysms (UIAs). We leveraged machine-learning techniques and advanced statistical methods to provide new insights into rupture intracranial aneurysm (RIA) risks. METHODS: We analysed the characteristics of 2505 patients with intracranial aneurysms (IA) discovered between 2016 and 2019. Baseline characteristics, familial history of IA, tobacco and alcohol consumption, pharmacological treatments before the IA diagnosis, cardiovascular risk factors and comorbidities, headaches, allergy and atopy, IA location, absolute IA size and adjusted size ratio (aSR) were analysed with a multivariable logistic regression (MLR) model. A random forest (RF) method globally assessed the risk factors and evaluated the predictive capacity of a multivariate model. RESULTS: Among 994 patients with RIA (39.7%) and 1511 patients with UIA (60.3 %), the MLR showed that IA location appeared to be the most significant factor associated with RIA (OR, 95% CI: internal carotid artery, reference; middle cerebral artery, 2.72, 2.02-3.58; anterior cerebral artery, 4.99, 3.61-6.92; posterior circulation arteries, 6.05, 4.41-8.33). Size and aSR were not significant factors associated with RIA in the MLR model and antiplatelet-treatment intake patients were less likely to have RIA (OR: 0.74; 95% CI: 0.55-0.98). IA location, age, following by aSR were the best predictors of RIA using the RF model. CONCLUSIONS: The location of IA is the most consistent parameter associated with RIA. The use of 'artificial intelligence' RF helps to re-evaluate the contribution and selection of each risk factor in the multivariate model.


Asunto(s)
Aneurisma Roto/etiología , Aneurisma Intracraneal/complicaciones , Factores de Edad , Anciano , Algoritmos , Aneurisma Roto/prevención & control , Femenino , Humanos , Aneurisma Intracraneal/diagnóstico por imagen , Aneurisma Intracraneal/patología , Aprendizaje Automático , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neuroimagen , Factores de Riesgo , Tomografía Computarizada por Rayos X
13.
Neurosurgery ; 87(1): 150-156, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32374868

RESUMEN

BACKGROUND: Management of small (<7 mm) unruptured intracranial aneurysms (UIA) remains controversial. Retrospective studies have suggested that post gadolinium arterial wall enhancement (AWE) of UIA on magnetic resonance imaging (MRI) may reflect aneurysm wall instability, and hence may highlight a higher risk of UIA growth. This trial aims at exploring wall imaging findings of UIAs with consecutive follow-up to substantiate these assumptions. OBJECTIVE: To develop diagnostic and predictive tools for the risk of IA evolution. Our aim is to demonstrate in clinical practice the predictive value of AWE for UIA growth. The growth will be determined by any modification of the UIA measurement. UIA growth and the UIA wall enhancement will be assessed in consensus by 2 expert neuroradiologists. METHODS: The French prospective UCAN project is a noninterventional international wide and multicentric cohort. UIA of bifurcation between 3 and 7 mm for whom a clinical and imaging follow-up without occlusion treatment was scheduled by local multidisciplinary staff will be included. Extensive clinical, biological, and imaging data will be recorded during a 3-yr follow-up. EXPECTED OUTCOMES: Discovering to improve the efficiency of UIA follow-up by identifying additional clinical, imaging, biological, and anatomic risk factors of UIA growth. DISCUSSION: A prospective nationwide recruitment allows for the inclusion of a large cohort of patients with UIA. It will combine clinical phenotyping and specific imaging with AWE screening. It will enable to exploit metadata and to explore some pathophysiological pathways by crossing clinical, genetic, biological, and imaging information.


Asunto(s)
Aneurisma Intracraneal/diagnóstico por imagen , Aneurisma Intracraneal/terapia , Imagen por Resonancia Magnética/métodos , Anciano , Consenso , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Estudios Prospectivos , Estudios Retrospectivos , Factores de Riesgo
14.
Oxid Med Cell Longev ; 2019: 2567198, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31214278

RESUMEN

Vascular aging is characterized by functional and structural changes of the vessel wall, including endothelial dysfunction, with decreased endothelial NO· bioavailability and elevated vasoconstrictor and inflammatory mediator production, vascular rigidity, and tone impairment. Moringa oleifera (MOI) is a little tree, and different parts of which are used in traditional medicine in tropical Africa, America, and Asia for therapeutic applications in several disorders including cardiovascular disease. The present study is aimed at assessing the effect of MOI on aging-associated alteration of the endothelial function in Wistar rats. Middle-aged Wistar rats (46-week-old males) have been fed with food containing or not 750 mg/kg/day of MOI seed powder for 4 weeks. A group of young Wistar rats (16-week-old) was used as control. Measurement of isometric contraction, western blot analysis, and immunostaining has then been performed in the aortas and mesenteric arteries to assess the endothelium function. MOI treatment improved carbachol-induced relaxation in both aortas and mesenteric arteries of middle-aged rats. In the aortas, this was associated with an increased Akt signalling and endothelial NO synthase activation and a downregulation of arginase-1. In the mesenteric arteries, the improvement of the endothelial-dependent relaxation was related to an EDHF-dependent mechanism. These results suggest a vascular protective effect of MOI seeds against the vascular dysfunction that develops during aging through different mechanisms in conductance and resistance arteries.


Asunto(s)
Envejecimiento/fisiología , Aorta/patología , Enfermedades Cardiovasculares/terapia , Endotelio/fisiología , Moringa oleifera , Animales , Células Cultivadas , Suplementos Dietéticos , Humanos , Masculino , Contracción Miocárdica , Óxido Nítrico Sintasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Semillas , Transducción de Señal , Vasodilatación
15.
Eur Heart J ; 40(37): 3081-3094, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31114854

RESUMEN

AIMS: The Brugada syndrome (BrS) is an inherited cardiac disorder predisposing to ventricular arrhythmias. Despite considerable efforts, its genetic basis and cellular mechanisms remain largely unknown. The objective of this study was to identify a new susceptibility gene for BrS through familial investigation. METHODS AND RESULTS: Whole-exome sequencing performed in a three-generation pedigree with five affected members allowed the identification of one rare non-synonymous substitution (p.R211H) in RRAD, the gene encoding the RAD GTPase, carried by all affected members of the family. Three additional rare missense variants were found in 3/186 unrelated index cases. We detected higher levels of RRAD transcripts in subepicardium than in subendocardium in human heart, and in the right ventricle outflow tract compared to the other cardiac compartments in mice. The p.R211H variant was then subjected to electrophysiological and structural investigations in human cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs). Cardiomyocytes derived from induced pluripotent stem cells from two affected family members exhibited reduced action potential upstroke velocity, prolonged action potentials and increased incidence of early afterdepolarizations, with decreased Na+ peak current amplitude and increased Na+ persistent current amplitude, as well as abnormal distribution of actin and less focal adhesions, compared with intra-familial control iPSC-CMs Insertion of p.R211H-RRAD variant in control iPSCs by genome editing confirmed these results. In addition, iPSC-CMs from affected patients exhibited a decreased L-type Ca2+ current amplitude. CONCLUSION: This study identified a potential new BrS-susceptibility gene, RRAD. Cardiomyocytes derived from induced pluripotent stem cells expressing RRAD variant recapitulated single-cell electrophysiological features of BrS, including altered Na+ current, as well as cytoskeleton disturbances.


Asunto(s)
Síndrome de Brugada/genética , Mutación Missense , Miocitos Cardíacos/patología , Proteínas ras/genética , Potenciales de Acción/genética , Adulto , Síndrome de Brugada/patología , Síndrome de Brugada/fisiopatología , Citoesqueleto/genética , Citoesqueleto/patología , Femenino , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Humanos , Masculino , Miocitos Cardíacos/fisiología
16.
Presse Med ; 48(3 Pt 1): 255-261, 2019 Mar.
Artículo en Francés | MEDLINE | ID: mdl-30857807

RESUMEN

Asthma is often associated with a Th2-type immune response with well-known cellular and molecular actors such as eosinophils, Th2 lymphocytes and associated cytokines such as interleukin-5 or IL-4. Nevertheless, some of the asthmatic patients show clinical manifestations and characteristics that do not correspond to the current pattern of the pathophysiology of asthma. Thus, recently new cellular and molecular actors in the development of asthma have been demonstrated in animal models and in humans. Among these are components of the innate immune system such as type 2 innate lymphoid cells or adaptive immune system such as Th9 lymphocytes. At the cellular level, the role of small G proteins in asthma is also highlighted as well as the role of major cytokines like IL-17 or those derived from the epithelium. A better knowledge of the physiopathology of asthma and the taking into account of these new actors allows the identification of new therapeutic targets for different endotypes of patients.


Asunto(s)
Asma/inmunología , Asma/fisiopatología , Humanos , Linfocitos/fisiología
17.
Bioorg Med Chem Lett ; 29(5): 755-760, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30655216

RESUMEN

Various 3-amino-, 3-aryloxy- and alkoxy-6-arylpyridazines have been synthesized by an electrochemical reductive cross-coupling between 3-amino-, 3-aryloxy- or 3-alkoxy-6-chloropyridazines and aryl or heteroaryl halides. In vitro antiproliferative activity of these products was evaluated against a representative panel of cancer cell lines (HuH7, CaCo-2, MDA-MB-231, HCT116, PC3, NCI-H727, HaCaT) and oncogenicity prevention of the more efficient derivatives was highlighted on human breast cancer cell line MDA-MB 468-Luc prior establishing their interaction with p44/42 and Akt-dependent signaling pathways.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Piridazinas/síntesis química , Piridazinas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos
18.
Am J Hum Genet ; 102(1): 133-141, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29304371

RESUMEN

Intracranial aneurysms (IAs) are acquired cerebrovascular abnormalities characterized by localized dilation and wall thinning in intracranial arteries, possibly leading to subarachnoid hemorrhage and severe outcome in case of rupture. Here, we identified one rare nonsense variant (c.1378A>T) in the last exon of ANGPTL6 (Angiopoietin-Like 6)-which encodes a circulating pro-angiogenic factor mainly secreted from the liver-shared by the four tested affected members of a large pedigree with multiple IA-affected case subjects. We showed a 50% reduction of ANGPTL6 serum concentration in individuals heterozygous for the c.1378A>T allele (p.Lys460Ter) compared to relatives homozygous for the normal allele, probably due to the non-secretion of the truncated protein produced by the c.1378A>T transcripts. Sequencing ANGPTL6 in a series of 94 additional index case subjects with familial IA identified three other rare coding variants in five case subjects. Overall, we detected a significant enrichment (p = 0.023) in rare coding variants within this gene among the 95 index case subjects with familial IA, compared to a reference population of 404 individuals with French ancestry. Among the 6 recruited families, 12 out of 13 (92%) individuals carrying IA also carry such variants in ANGPTL6, versus 15 out of 41 (37%) unaffected ones. We observed a higher rate of individuals with a history of high blood pressure among affected versus healthy individuals carrying ANGPTL6 variants, suggesting that ANGPTL6 could trigger cerebrovascular lesions when combined with other risk factors such as hypertension. Altogether, our results indicate that rare coding variants in ANGPTL6 are causally related to familial forms of IA.


Asunto(s)
Proteínas Similares a la Angiopoyetina/genética , Predisposición Genética a la Enfermedad , Aneurisma Intracraneal/genética , Mutación/genética , Sistemas de Lectura Abierta/genética , Proteína 6 similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina/sangre , Células Cultivadas , Codón sin Sentido/genética , Familia , Femenino , Células HEK293 , Humanos , Aneurisma Intracraneal/sangre , Masculino , Persona de Mediana Edad , Linaje , Factores de Riesgo
19.
J Allergy Clin Immunol ; 142(3): 824-833.e3, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29155102

RESUMEN

BACKGROUND: The molecular mechanisms responsible for airway smooth muscle cells' (aSMCs) contraction and proliferation in airway hyperresponsiveness (AHR) associated with asthma are still largely unknown. The small GTPases of the Rho family (RhoA, Rac1, and Cdc42) play a central role in SMC functions including migration, proliferation, and contraction. OBJECTIVE: The objective of this study was to identify the role of Rac1 in aSMC contraction and to investigate its involvement in AHR associated with allergic asthma. METHODS: To define the role of Rac1 in aSMC, ex and in vitro analyses of bronchial reactivity were performed on bronchi from smooth muscle (SM)-specific Rac1 knockout mice and human individuals. In addition, this murine model was exposed to allergens (ovalbumin or house dust mite extract) to decipher in vivo the implication of Rac1 in AHR. RESULTS: The specific SMC deletion or pharmacological inhibition of Rac1 in mice prevented the bronchoconstrictor response to methacholine. In human bronchi, a similar role of Rac1 was observed during bronchoconstriction. We further demonstrated that Rac1 activation is responsible for bronchoconstrictor-induced increase in intracellular Ca2+ concentration and contraction both in murine and in human bronchial aSMCs, through its association with phospholipase C ß2 and the stimulation of inositol 1,4,5-trisphosphate production. In vivo, Rac1 deletion in SMCs or pharmacological Rac1 inhibition by nebulization of NSC23766 prevented AHR in murine models of allergic asthma. Moreover, nebulization of NSC23766 decreased eosinophil and neutrophil populations in bronchoalveolar lavages from mice with asthma. CONCLUSIONS: Our data reveal an unexpected and essential role of Rac1 in the regulation of intracellular Ca2+ and contraction of aSMCs, and the development of AHR. Rac1 thus appears as an attractive therapeutic target in asthma, with a combined beneficial action on both bronchoconstriction and pulmonary inflammation.


Asunto(s)
Broncoconstricción/fisiología , Miocitos del Músculo Liso/fisiología , Neuropéptidos/fisiología , Hipersensibilidad Respiratoria/fisiopatología , Proteína de Unión al GTP rac1/fisiología , Aminoquinolinas/farmacología , Animales , Bronquios/fisiología , Calcio/fisiología , Células Cultivadas , Humanos , Masculino , Ratones Noqueados , Contracción Muscular , Músculo Liso/fisiología , Neuropéptidos/antagonistas & inhibidores , Pirimidinas/farmacología , Tráquea/fisiología , Proteína de Unión al GTP rac1/antagonistas & inhibidores
20.
J Clin Invest ; 127(12): 4516-4526, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29130930

RESUMEN

Abnormal activity of the renin-angiotensin-aldosterone system plays a causal role in the development of hypertension, atherosclerosis, and associated cardiovascular events such as myocardial infarction, stroke, and heart failure. As both a vasoconstrictor and a proinflammatory mediator, angiotensin II (Ang II) is considered a potential link between hypertension and atherosclerosis. However, a role for Ang II-induced inflammation in atherosclerosis has not been clearly established, and the molecular mechanisms and intracellular signaling pathways involved are not known. Here, we demonstrated that the RhoA GEF Arhgef1 is essential for Ang II-induced inflammation. Specifically, we showed that deletion of Arhgef1 in a murine model prevents Ang II-induced integrin activation in leukocytes, thereby preventing Ang II-induced recruitment of leukocytes to the endothelium. Mice lacking both LDL receptor (LDLR) and Arhgef1 were protected from high-fat diet-induced atherosclerosis. Moreover, reconstitution of Ldlr-/- mice with Arhgef1-deficient BM prevented high-fat diet-induced atherosclerosis, while reconstitution of Ldlr-/- Arhgef1-/- with WT BM exacerbated atherosclerotic lesion formation, supporting Arhgef1 activation in leukocytes as causal in the development of atherosclerosis. Thus, our data highlight the importance of Arhgef1 in cardiovascular disease and suggest targeting Arhgef1 as a potential therapeutic strategy against atherosclerosis.


Asunto(s)
Aterosclerosis/metabolismo , Leucocitos/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Vasculitis/metabolismo , Angiotensina II/genética , Angiotensina II/metabolismo , Animales , Aterosclerosis/genética , Aterosclerosis/patología , Modelos Animales de Enfermedad , Inflamación/genética , Inflamación/mortalidad , Inflamación/patología , Leucocitos/patología , Ratones , Ratones Noqueados , Receptores de LDL/deficiencia , Factores de Intercambio de Guanina Nucleótido Rho/genética , Vasculitis/genética , Vasculitis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...